Viscosity kernel of molecular fluids: Butane and polymer melts

Ruslan Puscasu, Billy Todd, Peter Daivis, Jesper Schmidt Hansen

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The wave-vector dependent shear viscosities for butane and freely jointed chains have been determined. The transverse momentum density and stress autocorrelation functions have been determined by equilibrium molecular dynamics in both atomic and molecular hydrodynamic formalisms. The density, temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means that generalized hydrodynamics must be applied in predicting the flow properties of molecular fluids on length scales where the strain rate varies sufficiently in the order of these dimensions (e.g., nanofluidic flows).
Original languageEnglish
JournalPhysical Review E (Statistical, Nonlinear, and Soft Matter Physics)
Volume82
Issue number1
Pages (from-to)011801
Number of pages15
ISSN1539-3755
DOIs
Publication statusPublished - 2010

Cite this