Tradeoff between speed and reproductive number in pathogen evolution

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The rapid succession of new variants of SARS-CoV-2 emphasizes the need to understand the factors driving pathogen evolution. Here, we investigate a possible tradeoff between the rate of progression of a disease and its reproductive number. Using an SEIR framework, we show that in the exponential growth phase of an epidemic, there is an optimal disease duration that balances the advantage of a fast disease progression with that of causing many secondary infections. This result offers one possible explanation for the ever shorter generation times of novel variants of SARS-CoV-2, as it progressed from the original strain to the Alpha, Delta, and, from late 2021 onwards, to several Omicron variant subtypes. In the endemic state, the optimum disappears and longer disease duration becomes advantageous for the pathogen. However, selection pressures depend on context: mitigation strategies such as quarantine of infected individuals may slow down the evolution towards longer-lasting, more infectious variants. This work then suggests that, in the future, the trend towards shorter generation times may reverse, and SARS-CoV-2 may instead evolve towards longer-lasting variants.

Original languageEnglish
Article number023003
JournalPhysical Review Research
Volume5
Issue number2
ISSN2643-1564
DOIs
Publication statusPublished - Apr 2023

Cite this