Testing the isomorph invariance of the bridge functions of Yukawa one-component plasmas

Federico Lucco Castello*, Panagiotis Tolias, Jeppe Dyre

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

Abstract

It has been recently conjectured that bridge functions remain nearly invariant along phase diagram lines of constant excess entropy for the broad class of R-simple liquids. To test this hypothesis, the bridge functions of Yukawa systems are computed outside the correlation void with the Ornstein-Zernike inversion method employing structural input from ultra-accurate molecular dynamics simulations and inside the correlation void with the cavity distribution method employing structural input from ultra-long specially designed molecular dynamics simulations featuring a tagged particle pair. Yukawa bridge functions are revealed to be isomorph invariant to a very high degree. The observed invariance is not exact, however, since isomorphic deviations exceed the overall uncertainties.

Original languageEnglish
Article number034501
JournalJournal of Chemical Physics
Volume154
Issue number3
Number of pages21
ISSN0021-9606
DOIs
Publication statusPublished - 21 Jan 2021

Bibliographical note

Funding Information:
The authors would like to acknowledge the financial support of the Swedish National Space Agency under Grant No. 143/16. This work was also partially supported by VILLUM Foundation under Grant No. 16515 (Matter). GPU molecular dynamics simulations were carried out at the Glass and Time computer cluster (Roskilde University). CPU molecular dynamics simulations were carried out on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the NSC (Linköping University) partially funded by the Swedish Research Council through Grant Agreement No. 2016-07213.

Cite this