Support for the Astronomically Calibrated 40Ar/39Ar Age of Fish Canyon Sanidine

Evidence from the Quaternary

Tiffany Rivera, Michael Storey, Christian Zeeden, Klaudia Kuiper, Frederik Hilgen

    Research output: Contribution to journalConference abstract in journalResearch

    Abstract

    Fish Canyon sanidine (FCs) is the neutron fluence monitor most widely used in Cenozoic argon geochronology. Recommend published ages for FCs have been determined through various intercalibration techniques, but have varied by up to 2% over the last three decades. The robust quality of the astronomical timescale, with precision better than 0.1% for the last 10 million years for directly tuned sections, suggests intercalibration with K-bearing minerals intercalated in astronomically tuned stratigraphic sections as the best way to proceed with addressing the true age of FCs. Recently, Kuiper, et al. (2008) determined an astronomically calibrated 40Ar/39Ar age of 28.201 0.046 Ma (2), relative to the indirect astronomically tuned Moroccan Melilla Basin Messâdit section. Here, we provide independent verification for the Kuiper, et al. (2008) FCs age using sanidines extracted from the A1 tephra intercalated in the direct astronomically tuned Faneromeni section on Crete. The tuning of this section
    was achieved through correlations to long (400kyr) and short (100kyr) eccentricity cycles, followed by tuning of sedimentary cycles to precession and summer insolation by applying the La2004(1,1) orbital solution (Laskar,
    et al., 2004). 40Ar/39Ar analyses of the < 1 Ma Bishop Tuff relative to our proposed astronomically calibrated 40Ar/39Ar age for FCs yield an age that is indistinguishable from existing U-Pb zircon (0.7671 0.0009 Ma; Crowley, et al. (2007)) and independent astronomical ages of this unit. Thus, the astronomically calibrated 40Ar/39Ar age for FCs provides concordant ages for a Quaternary tuff across multiple dating techniques. Single and multi-crystal 40Ar/39Ar experiments were conducted on a Nu Instruments Noblesse multi-collector noble gas mass spectrometer. The use of the multi-collector instrument allowed us to obtain high precision analyses with fully propagated external errors for FCs near the 0.1% goal of EARTHTIME.
    Original languageEnglish
    JournalGeophysical Research Abstracts
    Volume13
    Pages (from-to)1
    ISSN1607-7962
    Publication statusPublished - 2011
    EventEuropean Geosciences Union General Assembly 2011 - Vienna, Austria
    Duration: 3 Apr 20118 Apr 2011

    Conference

    ConferenceEuropean Geosciences Union General Assembly 2011
    CountryAustria
    CityVienna
    Period03/04/201108/04/2011

    Cite this

    Rivera, Tiffany ; Storey, Michael ; Zeeden, Christian ; Kuiper, Klaudia ; Hilgen, Frederik. / Support for the Astronomically Calibrated 40Ar/39Ar Age of Fish Canyon Sanidine : Evidence from the Quaternary. In: Geophysical Research Abstracts. 2011 ; Vol. 13. pp. 1.
    @article{201bf083716d4f78879379a963576ed3,
    title = "Support for the Astronomically Calibrated 40Ar/39Ar Age of Fish Canyon Sanidine: Evidence from the Quaternary",
    abstract = "Fish Canyon sanidine (FCs) is the neutron fluence monitor most widely used in Cenozoic argon geochronology. Recommend published ages for FCs have been determined through various intercalibration techniques, but have varied by up to 2{\%} over the last three decades. The robust quality of the astronomical timescale, with precision better than 0.1{\%} for the last 10 million years for directly tuned sections, suggests intercalibration with K-bearing minerals intercalated in astronomically tuned stratigraphic sections as the best way to proceed with addressing the true age of FCs. Recently, Kuiper, et al. (2008) determined an astronomically calibrated 40Ar/39Ar age of 28.201 0.046 Ma (2), relative to the indirect astronomically tuned Moroccan Melilla Basin Mess{\^a}dit section. Here, we provide independent verification for the Kuiper, et al. (2008) FCs age using sanidines extracted from the A1 tephra intercalated in the direct astronomically tuned Faneromeni section on Crete. The tuning of this sectionwas achieved through correlations to long (400kyr) and short (100kyr) eccentricity cycles, followed by tuning of sedimentary cycles to precession and summer insolation by applying the La2004(1,1) orbital solution (Laskar,et al., 2004). 40Ar/39Ar analyses of the < 1 Ma Bishop Tuff relative to our proposed astronomically calibrated 40Ar/39Ar age for FCs yield an age that is indistinguishable from existing U-Pb zircon (0.7671 0.0009 Ma; Crowley, et al. (2007)) and independent astronomical ages of this unit. Thus, the astronomically calibrated 40Ar/39Ar age for FCs provides concordant ages for a Quaternary tuff across multiple dating techniques. Single and multi-crystal 40Ar/39Ar experiments were conducted on a Nu Instruments Noblesse multi-collector noble gas mass spectrometer. The use of the multi-collector instrument allowed us to obtain high precision analyses with fully propagated external errors for FCs near the 0.1{\%} goal of EARTHTIME.",
    author = "Tiffany Rivera and Michael Storey and Christian Zeeden and Klaudia Kuiper and Frederik Hilgen",
    year = "2011",
    language = "English",
    volume = "13",
    pages = "1",
    journal = "Geophysical Research Abstracts",
    issn = "1607-7962",
    publisher = "Copernicus GmbH",

    }

    Support for the Astronomically Calibrated 40Ar/39Ar Age of Fish Canyon Sanidine : Evidence from the Quaternary. / Rivera, Tiffany; Storey, Michael; Zeeden, Christian; Kuiper, Klaudia; Hilgen, Frederik.

    In: Geophysical Research Abstracts, Vol. 13, 2011, p. 1.

    Research output: Contribution to journalConference abstract in journalResearch

    TY - ABST

    T1 - Support for the Astronomically Calibrated 40Ar/39Ar Age of Fish Canyon Sanidine

    T2 - Evidence from the Quaternary

    AU - Rivera, Tiffany

    AU - Storey, Michael

    AU - Zeeden, Christian

    AU - Kuiper, Klaudia

    AU - Hilgen, Frederik

    PY - 2011

    Y1 - 2011

    N2 - Fish Canyon sanidine (FCs) is the neutron fluence monitor most widely used in Cenozoic argon geochronology. Recommend published ages for FCs have been determined through various intercalibration techniques, but have varied by up to 2% over the last three decades. The robust quality of the astronomical timescale, with precision better than 0.1% for the last 10 million years for directly tuned sections, suggests intercalibration with K-bearing minerals intercalated in astronomically tuned stratigraphic sections as the best way to proceed with addressing the true age of FCs. Recently, Kuiper, et al. (2008) determined an astronomically calibrated 40Ar/39Ar age of 28.201 0.046 Ma (2), relative to the indirect astronomically tuned Moroccan Melilla Basin Messâdit section. Here, we provide independent verification for the Kuiper, et al. (2008) FCs age using sanidines extracted from the A1 tephra intercalated in the direct astronomically tuned Faneromeni section on Crete. The tuning of this sectionwas achieved through correlations to long (400kyr) and short (100kyr) eccentricity cycles, followed by tuning of sedimentary cycles to precession and summer insolation by applying the La2004(1,1) orbital solution (Laskar,et al., 2004). 40Ar/39Ar analyses of the < 1 Ma Bishop Tuff relative to our proposed astronomically calibrated 40Ar/39Ar age for FCs yield an age that is indistinguishable from existing U-Pb zircon (0.7671 0.0009 Ma; Crowley, et al. (2007)) and independent astronomical ages of this unit. Thus, the astronomically calibrated 40Ar/39Ar age for FCs provides concordant ages for a Quaternary tuff across multiple dating techniques. Single and multi-crystal 40Ar/39Ar experiments were conducted on a Nu Instruments Noblesse multi-collector noble gas mass spectrometer. The use of the multi-collector instrument allowed us to obtain high precision analyses with fully propagated external errors for FCs near the 0.1% goal of EARTHTIME.

    AB - Fish Canyon sanidine (FCs) is the neutron fluence monitor most widely used in Cenozoic argon geochronology. Recommend published ages for FCs have been determined through various intercalibration techniques, but have varied by up to 2% over the last three decades. The robust quality of the astronomical timescale, with precision better than 0.1% for the last 10 million years for directly tuned sections, suggests intercalibration with K-bearing minerals intercalated in astronomically tuned stratigraphic sections as the best way to proceed with addressing the true age of FCs. Recently, Kuiper, et al. (2008) determined an astronomically calibrated 40Ar/39Ar age of 28.201 0.046 Ma (2), relative to the indirect astronomically tuned Moroccan Melilla Basin Messâdit section. Here, we provide independent verification for the Kuiper, et al. (2008) FCs age using sanidines extracted from the A1 tephra intercalated in the direct astronomically tuned Faneromeni section on Crete. The tuning of this sectionwas achieved through correlations to long (400kyr) and short (100kyr) eccentricity cycles, followed by tuning of sedimentary cycles to precession and summer insolation by applying the La2004(1,1) orbital solution (Laskar,et al., 2004). 40Ar/39Ar analyses of the < 1 Ma Bishop Tuff relative to our proposed astronomically calibrated 40Ar/39Ar age for FCs yield an age that is indistinguishable from existing U-Pb zircon (0.7671 0.0009 Ma; Crowley, et al. (2007)) and independent astronomical ages of this unit. Thus, the astronomically calibrated 40Ar/39Ar age for FCs provides concordant ages for a Quaternary tuff across multiple dating techniques. Single and multi-crystal 40Ar/39Ar experiments were conducted on a Nu Instruments Noblesse multi-collector noble gas mass spectrometer. The use of the multi-collector instrument allowed us to obtain high precision analyses with fully propagated external errors for FCs near the 0.1% goal of EARTHTIME.

    M3 - Conference abstract in journal

    VL - 13

    SP - 1

    JO - Geophysical Research Abstracts

    JF - Geophysical Research Abstracts

    SN - 1607-7962

    ER -