Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms

Elijah J. Petersen, Monika Mortimer, Robert M Burgess, Richard D Handy, Shannon Hanna, Kay T Ho, Monique Johnson, Susana Loureiro, Henriette Selck, Janick J Scott-Fordsmand, David Spurgeon, Jason Unrine, Nico W van den Brink, Ying Wang, Jason White, Patricia Holden

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

One of the key components for environmental risk assessment of engineered nanomaterials (ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be critical for regulatory decision making regarding material hazard and risk, and for understanding the mechanism of toxicity. This perspective provides expert guidance for performing ENM bioaccumulation measurements across a broad range of test organisms and species. To accomplish this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous exposures of suspended single-celled and small multicellular species, it is critical to perform a robust procedure to separate suspended ENMs and small organisms to avoid overestimating bioaccumulation. For many multicellular organisms, it is essential to differentiate between the ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across epithelial tissues. For multicellular plants, key considerations include how exposure route and the role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency of washing procedures to remove loosely attached ENMs to the roots is not well understood. Within each organism category, case studies are provided to illustrate key methodological considerations for conducting robust bioaccumulation experiments for different species within each major group. The full scope of ENM bioaccumulation measurements and interpretations are discussed including conducting the organism exposure, separating organisms from the ENMs in the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation measurements was the critical need for further analytical method development to identify and quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies described herein will help improve the robustness of ENM bioaccumulation studies.
Original languageEnglish
JournalEnvironmental Science: Nano
Volume2019
Issue number6
Pages (from-to)1619-1656
Number of pages48
ISSN2051-8153
DOIs
Publication statusPublished - 2019

Cite this

Petersen, E. J., Mortimer, M., Burgess, R. M., Handy, R. D., Hanna, S., Ho, K. T., Johnson, M., Loureiro, S., Selck, H., Scott-Fordsmand, J. J., Spurgeon, D., Unrine, J., van den Brink, N. W., Wang, Y., White, J., & Holden, P. (2019). Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. Environmental Science: Nano, 2019(6), 1619-1656. https://doi.org/10.1039/c8en01378k