Abstract
It was recently shown that the real part of the frequency-dependent fluidity for several glass-forming liquids of different chemistry conforms to the prediction of the random barrier model (RBM) devised for ac electrical conduction in disordered solids [Bierwirth et al., Phys. Rev. Lett. 119, 248001 (2017)]. Inspired by these results, we introduce a crystallization-resistant modification of the Kob–Andersen binary Lennard-Jones mixture for which the results of extensive graphics-processing-unit-based molecular-dynamics simulations are presented. We find that the low-temperature mean-square displacement is fitted well by the RBM prediction, which involves no shape parameters. This finding highlights the challenge of explaining why a simple model based on hopping of non-interacting particles in a fixed random energy landscape with identical minima can reproduce the complex and highly cooperative dynamics of glass-forming liquids
Original language | English |
---|---|
Article number | 141101 |
Journal | Journal of Chemical Physics |
Volume | 152 |
Number of pages | 6 |
ISSN | 0021-9606 |
DOIs | |
Publication status | Published - 9 Apr 2020 |