Ruthenium dihydrogen complex for C-H activation: Catalytic H/D exchange under mild conditions

Martin H. G. Prechtl, M. Holscher, Y. Ben-David, N. Theyssen, D. Milstein, W. Leitner

Research output: Contribution to journalJournal articleResearchpeer-review


Calalytic H/D-exchange reactions were Studied with [Ru(dtbpmp)(eta(2)-H-2)(H)(2)] (1) as catalyst. Under mild reaction conditions (25-75 degrees C) a wide range of arenes and olefins undergo H/D exchange with [D-6]benzene. A preference for protons at sp(2) carbons was observed with conversions Lip to >90% and significant regioselectivity in certain cases, For more reaction insights NMR-based kinetic studies were performed with naphthalene as substrate, revealing an activation energy of 15.8 kcal mol(-1) for the H/D exchange at the beta-position. Furthermore, the key steps of the reaction mechanism were investigated by means of DFT calculations for both model complexes (PMe2 donor sites) and real catalysts (PtBu2 donor sites). The calculations resulted in Gibb's free activation energies in the range of 10-16 kcal mol(-1), indicating H/D exchange at the beta-position of naphthalene to he clearly favoured over the alpha-position, Much is in full accordance with the experimental observations. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Original languageEnglish
JournalEuropean Journal of Inorganic Chemistry
Issue number22
Pages (from-to)3493-3500
Number of pages8
Publication statusPublished - 2008
Externally publishedYes

Bibliographical note

ISI Document Delivery No.: 340YO Times Cited: 18 Cited Reference Count: 51 Cited References: Abdur-Rashid K, 2000, ORGANOMETALLICS, V19, P1652, DOI 10.1021/om990669i ANDRAE D, 1990, THEOR CHIM ACTA, V77, P123, DOI 10.1007/BF01114537 BAUSCHLICHER CW, 1995, J CHEM PHYS, V103, P1788, DOI 10.1063/1.469752 BECKE AD, 1993, J CHEM PHYS, V98, P5648, DOI 10.1063/1.464913 Bhalla G, 2005, J AM CHEM SOC, V127, P11372, DOI 10.1021/ja051532o Busch S, 1999, CHEM COMMUN, P2305, DOI 10.1039/a906580f CHAUDRET B, 1985, ORGANOMETALLICS, V4, P1727, DOI 10.1021/om00129a006 DITCHFIE.R, 1971, J CHEM PHYS, V54, P724, DOI 10.1063/1.1674902 FOLEY P, 1980, J AM CHEM SOC, V102, P6713, DOI 10.1021/ja00542a009 FRENKING G, 1996, REV COMP CH, V8, P63 Frisch M. J., 2004, GAUSSIAN 03 REVISION Giunta D, 2003, ADV SYNTH CATAL, V345, P1139, DOI 10.1002/adsc.200303091 Golden JT, 2001, J AM CHEM SOC, V123, P5837, DOI 10.1021/ja0155480 GORDON MS, 1980, CHEM PHYS LETT, V76, P163, DOI 10.1016/0009-2614(80)80628-2 Guo QX, 2005, CHINESE J CHEM, V23, P341 HARIHARA.PC, 1973, THEOR CHIM ACTA, V28, P213, DOI 10.1007/BF00533485 HARIHARA.PC, 1974, MOL PHYS, V27, P209, DOI 10.1080/00268977400100171 HAY PJ, 1985, J CHEM PHYS, V82, P299, DOI 10.1063/1.448975 HEHRE WJ, 1972, J CHEM PHYS, V56, P2257, DOI 10.1063/1.1677527 Hermann D, 2002, ORGANOMETALLICS, V21, P812, DOI 10.1021/om010719v JESSOP PG, 1992, COORDIN CHEM REV, V121, P155, DOI 10.1016/0010-8545(92)80067-2 Kakiuchi F, 2002, ACCOUNTS CHEM RES, V35, P826, DOI 10.1021/ar960318p Kawatsura M, 2001, ORGANOMETALLICS, V20, P1960, DOI 10.1021/om0009987 Klei SR, 2002, ORGANOMETALLICS, V21, P4905, DOI 10.1021/om020375o Klei SR, 2002, J AM CHEM SOC, V124, P2092, DOI 10.1021/ja017219d KLOEK SM, 2007, ANGEW CHEM, V119, P4736 KLOEK SM, 2007, ANGEW CHEM INT EDIT, V46, P4820 Kruger J, 2005, EUR J ORG CHEM, P1402, DOI 10.1002/ejoc.200400669 LEE CT, 1988, PHYS REV B, V37, P785, DOI 10.1103/PhysRevB.37.785 Lenges CP, 1999, J AM CHEM SOC, V121, P4385, DOI 10.1021/ja984409o Lowry T.H., 1987, MECH THEORY ORGANIC McAuley B, 2003, J LABELLED COMPD RAD, V46, P1191, DOI 10.1002/jlcr.780 Paal C, 1918, BER DTSCH CHEM GES, V51, P711, DOI 10.1002/cber.19180510186 Perrin D. D., 1988, PURIFICATION LAB CHE Prechtl M. H. G., 2007, ANGEW CHEM, V119, P2319, DOI 10.1002/ange.200603677 Prechtl MHG, 2007, CHEM-EUR J, V13, P1539, DOI 10.1002/chem.200600897 Prechtl MHG, 2007, ANGEW CHEM INT EDIT, V46, P2269, DOI 10.1002/anie.200603677 Rybtchinski B, 2003, J AM CHEM SOC, V125, P11041, DOI 10.1021/ja029197g Sabo-Etienne S, 1998, COORDIN CHEM REV, V178, P381, DOI 10.1016/S0010-8545(98)00063-0 SCHAFER A, 1992, J CHEM PHYS, V97, P2571 SCHAFER A, 1994, J CHEM PHYS, V100, P5829 Skaddan MB, 2004, ORG LETT, V6, P11, DOI 10.1021/ol0359923 STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623, DOI 10.1021/j100096a001 Tenn WJ, 2005, J AM CHEM SOC, V127, P14172, DOI 10.1021/ja051497l Tenn WJ, 2006, ORGANOMETALLICS, V25, P5173, DOI 10.1021/om060657e Thomas A. F., 1971, DEUTERIUM LABELLING Tomasi J, 2005, CHEM REV, V105, P2999, DOI 10.1021/cr9904009 VOSKO SH, 1980, CAN J PHYS, V58, P1200 WHITESIDES GM, 1985, ORGANOMETALLICS, V4, P1819, DOI 10.1021/om00129a023 Wong-Foy AG, 2003, J AM CHEM SOC, V125, P14292, DOI 10.1021/ja037849a Yung CM, 2004, J AM CHEM SOC, V126, P13033, DOI 10.1021/ja046825g Prechtl, Martin H. G. Hoelscher, Markus Ben-David, Yehoshoa Theyssen, Nils Milstein, David Leitner, Walter Prechtl, Martin/A-7416-2008 Prechtl, Martin/0000-0003-2155-8006 Max-Planck-Gesellscaft and German-Israeli Project Cooperation (DIP G7.1) The Mynott group (R. Eul, C. Wirtz, W. Wisniewski, M. Stachelhaus, B. Wa(ss)muth and R. Mynott) is acknowledged for NMR and IR experiments. RWTH Aachen, Max-Planck-Gesellscaft and German-Israeli Project Cooperation (DIP G7.1) are gratefully acknowleged for financial support. We are also grateful for generous allocation of computer time by the Computation and Communication Centre of the RWTH Aachen. 18 Wiley-v c h verlag gmbh Weinheim


  • ruthenium dihydrogen complexes H/D exchange CH activation deuteration DFT calculations molecular-orbital methods gaussian-basis sets hydride complexes thermal-decomposition iridium complexes ir(iii) complexes organic-molecules phosphine-ligands bond activation atoms li Chemistry

Cite this