Rotational and spin viscosities of water: Application to nanofluidics

Jesper Schmidt Hansen, Henrik Bruus, Billy Todd, Peter Daivis

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

In this paper we evaluate the rotational viscosity and the two spin viscosities for liquid water using equilibrium molecular dynamics. Water is modeled via the flexible SPC/Fw model where the Coulomb interactions are calculated via the Wolf method which enables the long simulation times required. We find that the rotational viscosity is independent of the temperature in the range from 284 to 319 K. The two spin viscosities, on the other hand, decrease with increasing temperature and are found to be two orders of magnitude larger than that estimated by Bonthuis et al. [Phys. Rev. Lett. 103, 144503 (2009)] We apply the results from molecular dynamics simulations to the extended Navier–Stokes equations that include the coupling between intrinsic angular momentum and linear momentum. For a flow driven by an external field the coupling will reduce the flow rate significantly for nanoscale geometries. The coupling also enables conversion of rotational electrical energy into fluid linear momentum and we find that in order to obtain measurable flow rates the electrical field strength must be in the order of 0.1 MV m−1 and rotate with a frequency of more than 100 MHz.
Original languageEnglish
JournalJournal of Chemical Physics
Volume133
Issue number14
Number of pages7
ISSN0021-9606
DOIs
Publication statusPublished - 2010

Keywords

  • angular momentum
  • linear momentum
  • molecular dynamics method
  • nanofluidics
  • Navier-Stokes equations
  • viscosity
  • water

Cite this