Ionic Liquid Surface Composition Controls the Size of Gold Nanoparticles Prepared by Sputtering Deposition

H. Wender, L. F. de Oliveira, P. Migowski, A. F. Feil, E. Lissner, Martin H. G. Prechtl, S. R. Teixeira, J. Dupont

Research output: Contribution to journalJournal articleResearchpeer-review


The sputtering of gold foil onto 1-n-butyl-3-methylimidazolium tetrafluoroborate, hexafluorophosphate, bis(trifluoromethylsulfonyl)amide, or tris(fluoro)tris(perfluoroethane)phosphate ionic liquids (ILs) generates stable and well-dispersed gold nanoparticles (NPs) of 3-5 nm under conditions of 40 mA, 335 V, and 2 Pa Ar work pressure. The size and size distribution of these Au nanoparticles depends on various experimental parameters, particularly the surface composition of the IL and less so the surface tension and viscosity. Under the experimental conditions used here, both nucleation and NP growth seem to occur on the IL surface and the NP size changes with the changes in the IL surface composition, especially with the increase of the fluorinated content. Moreover, the NP size is independent of sputtering time but does depend on the discharge current. When higher discharge currents are used, more gold atoms hit the ionic liquid surface per unit time, changing the kinetics of particle growth on the surface of the IL.
Original languageEnglish
JournalJournal of Physical Chemistry C
Issue number27
Pages (from-to)11764-11768
Number of pages5
Publication statusPublished - 2010
Externally publishedYes

Bibliographical note

ISI Document Delivery No.: 620NZ Times Cited: 27 Cited Reference Count: 47 Cited References: Aliaga C, 2007, PHYS CHEM CHEM PHYS, V9, P3683, DOI 10.1039/b703574h Bhargava BL, 2006, J AM CHEM SOC, V128, P10073, DOI 10.1021/ja060035k Caporali S, 2006, J ELECTRON SPECTROSC, V151, P4, DOI 10.1016/j.elspec.2005.09.010 Cassol CC, 2006, ADV SYNTH CATAL, V348, P243, DOI 10.1002/adsc.200505295 Dash P, 2009, CHEM COMMUN, P812, DOI 10.1039/b816446k Dupont J, 2006, PHYS CHEM CHEM PHYS, V8, P2441, DOI 10.1039/b602046a Dupont J, 2010, CHEM SOC REV, V39, P1780, DOI 10.1039/b822551f Dupont J, 2002, J AM CHEM SOC, V124, P4228, DOI 10.1021/ja025818u Dupont J, 2004, J BRAZIL CHEM SOC, V15, P341, DOI 10.1590/S0103-50532004000300002 Fonseca GS, 2006, J COLLOID INTERF SCI, V301, P193, DOI 10.1016/j.jcis.2006.04.073 Gelesky MA, 2005, J AM CHEM SOC, V127, P4588, DOI 10.1021/ja042711t Gutel T, 2009, J MATER CHEM, V19, P3624, DOI 10.1039/b821659b Hatakeyama Y, 2009, J PHYS CHEM C, V113, P3917, DOI 10.1021/jp807046u Kolbeck C, 2008, LANGMUIR, V24, P9500, DOI 10.1021/la801261h Kolbeck C, 2009, J PHYS CHEM B, V113, P8682, DOI 10.1021/jp902978r Kramer J, 2008, ORGANOMETALLICS, V27, P1976, DOI 10.1021/om800056z Krischok S, 2007, J PHYS CHEM B, V111, P4801, DOI 10.1021/jp067136p LIU QS, J CHEM ENG DATA Lockett V, 2008, PHYS CHEM CHEM PHYS, V10, P1330, DOI 10.1039/b713584j Lopes JNAC, 2006, J PHYS CHEM B, V110, P3330, DOI 10.1021/jp056006y Lovelock KRJ, 2009, J PHYS CHEM B, V113, P2854, DOI 10.1021/jp810637d Lynden-Bell RM, 2006, PHYS CHEM CHEM PHYS, V8, P949, DOI 10.1039/b514848k Migowski P, 2007, PHYS CHEM CHEM PHYS, V9, P4814, DOI 10.1039/b703979d Migowski P, 2007, CHEM-EUR J, V13, P32, DOI 10.1002/chem.200601438 Migowski P, 2010, PHYS CHEM CHEM PHYS, V12, P6826, DOI 10.1039/b925834e Moreno-Manas M, 2005, J FLUORINE CHEM, V126, P1435, DOI 10.1016/j.jfluchem.2005.08.009 Mulvaney P, 1996, LANGMUIR, V12, P788, DOI 10.1021/la9502711 Neto BAD, 2006, ANGEW CHEM INT EDIT, V45, P7251, DOI 10.1002/anie.200602219 Okazaki K, 2009, CHEM LETT, V38, P330, DOI 10.1246/cl.2009.330 Okazaki KI, 2008, CHEM COMMUN, P691, DOI 10.1039/b714761a Redel E, 2008, INORG CHEM, V47, P14, DOI 10.1021/ic702071w Redel E, 2008, CHEM COMMUN, P1789, DOI 10.1039/b718055a Rivera-Rubero S, 2006, J PHYS CHEM B, V110, P4756, DOI 10.1021/jp0563989 Santos CS, 2009, J PHYS CHEM B, V113, P923, DOI 10.1021/jp807924g Scariot M, 2008, ANGEW CHEM INT EDIT, V47, P9075, DOI 10.1002/anie.200804200 Scheeren CW, 2003, INORG CHEM, V42, P4738, DOI 10.1021/ic034453r Souza RF, 2008, J PHYS-CONDENS MAT, V20, DOI 10.1088/0953-8984/20/15/155102 Suarez PAZ, 1996, POLYHEDRON, V15, P1217, DOI 10.1016/0277-5387(95)00365-7 Suzuki T, 2009, ELECTROCHEMISTRY, V77, P636 Torimoto T, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2404975 Tristany M, 2006, ADV FUNCT MATER, V16, P2008, DOI 10.1002/adfm.200600360 Tsuda T, 2009, ELECTROCHEMISTRY, V77, P693 Umpierre AP, 2005, ADV SYNTH CATAL, V347, P1404, DOI 10.1002/adsc.200404313 Wang Y, 2005, J AM CHEM SOC, V127, P5316, DOI 10.1021/ja043625w Waring C, 2010, J PHYS CHEM LETT, V1, P429, DOI 10.1021/jz900247y Wei GT, 2004, J AM CHEM SOC, V126, P5036, DOI 10.1021/ja039874m Zhao DB, 2006, SMALL, V2, P879, DOI 10.1002/smll.200500317 Wender, Heberton de Oliveira, Luciane F. Migowski, Pedro Feil, Adriano F. Lissner, Elizeo Prechtl, Martin H. G. Teixeira, Sergio R. Dupont, Jairton Dupont, Jairton/F-7161-2010; FEIL, ADRIANO/F-8273-2011; Wender, Heberton/G-3741-2012; Migowski, Pedro/J-5991-2012; Prechtl, Martin/A-7416-2008; de Oliveira, Luciane/F-5636-2013 Prechtl, Martin/0000-0003-2155-8006; CNPq; FAPERGS; MCT; CAPES; INCT-Catal.; CME-UFRGS Thanks are due to the following Brazilian agencies for financial support: CNPq, FAPERGS, MCT, CAPES, INCT-Catal., and CME-UFRGS. 27 Amer chemical soc Washington


  • transition-metal nanoparticles ray photoelectron-spectroscopy heavily fluorinated compounds sum-frequency generation hydrogenation reactions alloy nanoparticles dependent formation anion organization precursors Chemistry Science & Technology - Other Topics Materials Science

Cite this