Influence of near-bottom re-suspended sediment on benthic light availability

Troels Møller Pedersen, Charles L. Gallegos, Søren Laurentius Nielsen

Research output: Contribution to journalJournal articleResearchpeer-review


Increased light attenuation in the water column is a common consequence of the increased organic loading that accompanies anthropogenic eutrophication in coastal systems. Frequently, the best water quality correlate of the light attenuation coefficient is the total suspended solids, even in systems in which nutrient loading occurs primarily by groundwater input, that is, without strong river inputs of sediment. Alteration of bottomsediment texture, organic content, and bulk density by organic loading has been well documented. Here we report the effect of sedimentre-suspension on near-bottomlight attenuation using an array of in situ light sensors with very close spacing near the sediment–water interface and a radiative transfer (RT) modeling with the software “Hydrolight”. We found that the light attenuation coefficient over 4.5 cm just above the bottom exceeded the attenuation found higher in the water column by a factor ranging from 1.6 to >30. RT modeling indicated that light received at the bottom could be overestimated by a factor 4 or more by extrapolating measurements not taking the near-bottomlight attenuation into account. The results may help explain the wide range of seagrass light requirements observed in different systems.
Original languageEnglish
JournalEstuarine, Coastal and Shelf Science
Pages (from-to)93-101
Number of pages9
Publication statusPublished - 2012


  • light attenuation
  • radiative transfer modeling
  • seagrass distribution
  • sediment organic content
  • turbidity

Cite this