Exploring the contribution of exposure heterogeneity to the the cessation of the 2014 Ebola epidemic

F Uekermann, Lone Simonsen, Kim Sneppen

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The unexpected early cessation of the recent West Africa Ebola outbreak demonstrated shortcomings of popular forecasting approaches and has not been fully understood yet. A popular hypothesis is that public health interventions mitigated the spread, such as ETUs and safe burials. We investigate whether risk heterogeneity within the population could serve as an alternative explanation. We introduce a model for spread in heterogeneous host population that is particularly well suited for early predictions due to its simplicity and ease of application. Furthermore, we explore the conditions under which the observed epidemic trajectory can be explained without taking into account the effect of public health interventions. While the obtained fits closely match the total case count time series, closer inspection of sub-population results made us conclude that risk heterogeneity is unlikely to fully explain the early cessation of Ebola; other factors such as behavioral changes and other interventions likely played a major role. More accurate predictions in a future scenario require models that allow for early sub-exponential growth, as well as access to additional data on patient occupation (risk level) and location, to allow identify local phenomena that influence spreading behavior.
Original languageEnglish
Article numbere0210638
JournalP L o S One
Volume14
Issue number2
ISSN1932-6203
DOIs
Publication statusPublished - 1 Feb 2019

Keywords

  • mathematical modeling
  • ebola
  • heterogeneity

Cite this

@article{54ea2b4b8f604f1c81e66a1d9749fee8,
title = "Exploring the contribution of exposure heterogeneity to the the cessation of the 2014 Ebola epidemic",
abstract = "The unexpected early cessation of the recent West Africa Ebola outbreak demonstrated shortcomings of popular forecasting approaches and has not been fully understood yet. A popular hypothesis is that public health interventions mitigated the spread, such as ETUs and safe burials. We investigate whether risk heterogeneity within the population could serve as an alternative explanation. We introduce a model for spread in heterogeneous host population that is particularly well suited for early predictions due to its simplicity and ease of application. Furthermore, we explore the conditions under which the observed epidemic trajectory can be explained without taking into account the effect of public health interventions. While the obtained fits closely match the total case count time series, closer inspection of sub-population results made us conclude that risk heterogeneity is unlikely to fully explain the early cessation of Ebola; other factors such as behavioral changes and other interventions likely played a major role. More accurate predictions in a future scenario require models that allow for early sub-exponential growth, as well as access to additional data on patient occupation (risk level) and location, to allow identify local phenomena that influence spreading behavior.",
keywords = "mathematical modeling, ebola, heterogeneity",
author = "F Uekermann and Lone Simonsen and Kim Sneppen",
year = "2019",
month = "2",
day = "1",
doi = "10.1371/journal.pone.0210638",
language = "English",
volume = "14",
journal = "P L o S One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "2",

}

Exploring the contribution of exposure heterogeneity to the the cessation of the 2014 Ebola epidemic. / Uekermann, F; Simonsen, Lone; Sneppen, Kim.

In: P L o S One, Vol. 14, No. 2, e0210638, 01.02.2019.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Exploring the contribution of exposure heterogeneity to the the cessation of the 2014 Ebola epidemic

AU - Uekermann, F

AU - Simonsen, Lone

AU - Sneppen, Kim

PY - 2019/2/1

Y1 - 2019/2/1

N2 - The unexpected early cessation of the recent West Africa Ebola outbreak demonstrated shortcomings of popular forecasting approaches and has not been fully understood yet. A popular hypothesis is that public health interventions mitigated the spread, such as ETUs and safe burials. We investigate whether risk heterogeneity within the population could serve as an alternative explanation. We introduce a model for spread in heterogeneous host population that is particularly well suited for early predictions due to its simplicity and ease of application. Furthermore, we explore the conditions under which the observed epidemic trajectory can be explained without taking into account the effect of public health interventions. While the obtained fits closely match the total case count time series, closer inspection of sub-population results made us conclude that risk heterogeneity is unlikely to fully explain the early cessation of Ebola; other factors such as behavioral changes and other interventions likely played a major role. More accurate predictions in a future scenario require models that allow for early sub-exponential growth, as well as access to additional data on patient occupation (risk level) and location, to allow identify local phenomena that influence spreading behavior.

AB - The unexpected early cessation of the recent West Africa Ebola outbreak demonstrated shortcomings of popular forecasting approaches and has not been fully understood yet. A popular hypothesis is that public health interventions mitigated the spread, such as ETUs and safe burials. We investigate whether risk heterogeneity within the population could serve as an alternative explanation. We introduce a model for spread in heterogeneous host population that is particularly well suited for early predictions due to its simplicity and ease of application. Furthermore, we explore the conditions under which the observed epidemic trajectory can be explained without taking into account the effect of public health interventions. While the obtained fits closely match the total case count time series, closer inspection of sub-population results made us conclude that risk heterogeneity is unlikely to fully explain the early cessation of Ebola; other factors such as behavioral changes and other interventions likely played a major role. More accurate predictions in a future scenario require models that allow for early sub-exponential growth, as well as access to additional data on patient occupation (risk level) and location, to allow identify local phenomena that influence spreading behavior.

KW - mathematical modeling

KW - ebola

KW - heterogeneity

U2 - 10.1371/journal.pone.0210638

DO - 10.1371/journal.pone.0210638

M3 - Journal article

VL - 14

JO - P L o S One

JF - P L o S One

SN - 1932-6203

IS - 2

M1 - e0210638

ER -