TY - JOUR
T1 - Communication: Supramolecular structures in monohydroxy alcohols: Insights from shear-mechanical studies of a systematic series of octanol structural isomers
AU - Hecksher, Tina
AU - Jakobsen, Bo
PY - 2014/9/10
Y1 - 2014/9/10
N2 - A recent study [C. Gainaru, R. Figuli, T. Hecksher, B. Jakobsen, J. C. Dyre, M. Wilhelm, and R. Böhmer, Phys. Rev. Lett.112, 098301 (2014)] of two supercooled monohydroxy alcohols close to the glass-transition temperature showed that the Debye peak, thus far mainly observed in the electrical response, also has a mechanical signature. In this work, we apply broadband shear-mechanical spectroscopy to a systematic series of octanol structural isomers, x-methyl-3-heptanol (with x ranging from 2 to 6). We find that the characteristics of the mechanical signature overall follow the systematic behavior observed in dielectric spectroscopy. However, the influence from the molecular structure is strikingly small in mechanics (compared to roughly a factor 100 increase in dielectric strength) and one isomer clearly does not conform to the general ordering. Finally, the mechanical data surprisingly indicate that the size of the supramolecular structures responsible for the Debye process is nearly unchanged in the series
AB - A recent study [C. Gainaru, R. Figuli, T. Hecksher, B. Jakobsen, J. C. Dyre, M. Wilhelm, and R. Böhmer, Phys. Rev. Lett.112, 098301 (2014)] of two supercooled monohydroxy alcohols close to the glass-transition temperature showed that the Debye peak, thus far mainly observed in the electrical response, also has a mechanical signature. In this work, we apply broadband shear-mechanical spectroscopy to a systematic series of octanol structural isomers, x-methyl-3-heptanol (with x ranging from 2 to 6). We find that the characteristics of the mechanical signature overall follow the systematic behavior observed in dielectric spectroscopy. However, the influence from the molecular structure is strikingly small in mechanics (compared to roughly a factor 100 increase in dielectric strength) and one isomer clearly does not conform to the general ordering. Finally, the mechanical data surprisingly indicate that the size of the supramolecular structures responsible for the Debye process is nearly unchanged in the series
U2 - 10.1063/1.4895095
DO - 10.1063/1.4895095
M3 - Letter
SN - 0021-9606
VL - 141
JO - The Journal of Chemical Physics
JF - The Journal of Chemical Physics
M1 - 101104
ER -