Projekter pr. år
Abstract
In this paper we study the sequence of orthonormal polynomials {Pn(μ;z)} defined by a Borel probability measure μ with non-polar compact support S(μ)⊂C. For each n ≥ 2 let ωn denote the unique measure of maximal entropy for Pn(μ;z). We prove that the sequence {ωn}n is pre-compact for the weak-* topology and that for any weak-* limit ν of a convergent sub-sequence {ωnk}, the support S(ν) is contained in the filled-in or polynomial-convex hull of the support S(μ) for μ. And for n-th root regular measures μ the full sequence {ωn}n converges weak-* to the equilibrium measure ω on S(μ).
Bidragets oversatte titel | Om svage grænser af målene med maksimal entropi for orthogonale polynomier |
---|---|
Originalsprog | Engelsk |
Tidsskrift | Potential Analysis |
Vol/bind | 54 |
Udgave nummer | 2 |
Sider (fra-til) | 219-225 |
Antal sider | 7 |
ISSN | 0926-2601 |
DOI | |
Status | Udgivet - feb. 2021 |
Bibliografisk note
Important note from the Publisher regarding te attached version of the article: “This is a post-peer-review, pre-copyedit version of an article published in Potential Analysis. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11118-019-09824-5”.Emneord
- orthonormale polynomier
- svag* grænse
- ekvillibriums mål
Projekter
- 1 Afsluttet
-
Holomorpic Dynamics and Orthogonal Polynomials
Petersen, C. L. (Anden), Petersen, H. L. (Projektdeltager), Henriksen, C. (Projektdeltager) & Christiansen, J. S. (Projektdeltager)
01/11/2015 → 31/10/2018
Projekter: Projekt › Forskning