TY - JOUR
T1 - Variation of the dynamic susceptibility along an isochrone
AU - Bailey, Nicholas
AU - Schrøder, Thomas
AU - Dyre, J. C.
PY - 2014
Y1 - 2014
N2 - Koperwas et al. showed in a recent paper [Phys. Rev. Lett. 111, 125701 (2013)] that the dynamic susceptibility χ4 as estimated by dielectric measurements for certain glass-forming liquids decreases substantially with increasing pressure along a curve of constant relaxation time. This observation is at odds with other measures of dynamics being invariant and seems to pose a problem for theories of glass formation. We show that this variation is in fact consistent with predictions for liquids with hidden scale invariance: Measures of dynamics at constant volume are invariant along isochrones, called isomorphs in such liquids, but contributions to fluctuations from long-wavelength fluctuations can vary. This is related to the known noninvariance of the isothermal bulk modulus. Considering the version of χ4 defined for the NVT ensemble, data from simulations of a binary Lennard-Jones liquid show in fact a slight increase with increasing density. This is a true departure from the formal invariance expected for this quantity.
AB - Koperwas et al. showed in a recent paper [Phys. Rev. Lett. 111, 125701 (2013)] that the dynamic susceptibility χ4 as estimated by dielectric measurements for certain glass-forming liquids decreases substantially with increasing pressure along a curve of constant relaxation time. This observation is at odds with other measures of dynamics being invariant and seems to pose a problem for theories of glass formation. We show that this variation is in fact consistent with predictions for liquids with hidden scale invariance: Measures of dynamics at constant volume are invariant along isochrones, called isomorphs in such liquids, but contributions to fluctuations from long-wavelength fluctuations can vary. This is related to the known noninvariance of the isothermal bulk modulus. Considering the version of χ4 defined for the NVT ensemble, data from simulations of a binary Lennard-Jones liquid show in fact a slight increase with increasing density. This is a true departure from the formal invariance expected for this quantity.
U2 - 10.1103/PhysRevE.90.042310
DO - 10.1103/PhysRevE.90.042310
M3 - Journal article
SN - 1539-3755
VL - 90
JO - Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)
JF - Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)
IS - 4
M1 - 042310
ER -