TY - JOUR
T1 - Using landscape scenarios to improve local nitrogen management and planning
AU - Andersen, Peter Stubkjær
AU - Andersen, Erling
AU - Graversgaard, Morten
AU - Christensen, A. A.
AU - Vejre, Henrik
AU - Dalgaard, Tommy
PY - 2019
Y1 - 2019
N2 - Scenario-building is a widely used tool to initiate discussions on future land uses. In scenarios possible futures can be explored and peoples' ideas as well as societal trends can be visualized by the use of maps, pictures and figures. With focus on agricultural nitrogen management, and point of departure in the farmers' decisions-regarding fertilizer inputs, crop rotations, land use, and drainage, landscape scenarios are formulated based on local ideas for future nitrogen management and general prospects for local development. The key research question addressed in this paper is how landscape scenarios can guide farmers to improve nitrogen management in smaller catchments dominated by farming. Participatory modelling was used to develop landscape scenarios, depicting the change of nitrogen emission as a result of changes in landscape management and agricultural practices. In the development of the scenarios we used an ArcMap based tool combining statistical data, experimental knowledge, nitrate leaching modelling and input from local stakeholders on biophysical as well as land use and farm management issues. The scenarios presented are the result of a collaborative planning experiment within the frames of the dNmark research alliance on nitrogen. Three different types of scenarios are presented and discussed and their effects in terms of N reduction are estimated. The three scenarios were called: River valley set-aside, constructed wetlands, and land zonation. All the modelled scenarios are estimated to have a positive effect i.e. a reduction of the level of N leached to the root zone. Based on the experience gathered in the project, the feasibility of using scenarios for future environmental planning in the agricultural landscapes is discussed. Further, this is related to the current discussion in Denmark on geographically targeted nitrogen regulation. It is concluded that the co-creative approach to formulation of scenarios can be an effective way of increasing the knowledge and ownership of possible future solutions, however the cost associated with this planning approach is likely to substantially higher that more traditional planning approaches. Consequently, the estimated transactions costs should be weighed against the expected benefits in terms of more successful implementation.
AB - Scenario-building is a widely used tool to initiate discussions on future land uses. In scenarios possible futures can be explored and peoples' ideas as well as societal trends can be visualized by the use of maps, pictures and figures. With focus on agricultural nitrogen management, and point of departure in the farmers' decisions-regarding fertilizer inputs, crop rotations, land use, and drainage, landscape scenarios are formulated based on local ideas for future nitrogen management and general prospects for local development. The key research question addressed in this paper is how landscape scenarios can guide farmers to improve nitrogen management in smaller catchments dominated by farming. Participatory modelling was used to develop landscape scenarios, depicting the change of nitrogen emission as a result of changes in landscape management and agricultural practices. In the development of the scenarios we used an ArcMap based tool combining statistical data, experimental knowledge, nitrate leaching modelling and input from local stakeholders on biophysical as well as land use and farm management issues. The scenarios presented are the result of a collaborative planning experiment within the frames of the dNmark research alliance on nitrogen. Three different types of scenarios are presented and discussed and their effects in terms of N reduction are estimated. The three scenarios were called: River valley set-aside, constructed wetlands, and land zonation. All the modelled scenarios are estimated to have a positive effect i.e. a reduction of the level of N leached to the root zone. Based on the experience gathered in the project, the feasibility of using scenarios for future environmental planning in the agricultural landscapes is discussed. Further, this is related to the current discussion in Denmark on geographically targeted nitrogen regulation. It is concluded that the co-creative approach to formulation of scenarios can be an effective way of increasing the knowledge and ownership of possible future solutions, however the cost associated with this planning approach is likely to substantially higher that more traditional planning approaches. Consequently, the estimated transactions costs should be weighed against the expected benefits in terms of more successful implementation.
KW - Nutrient management
KW - GIS
KW - Co-creative modelling
KW - Predictive tool
KW - Local knowledge
KW - Watershed
U2 - 10.1016/j.jenvman.2018.11.023
DO - 10.1016/j.jenvman.2018.11.023
M3 - Journal article
SN - 0301-4797
VL - 232
SP - 523
EP - 530
JO - Journal of Environmental Management
JF - Journal of Environmental Management
ER -