Universality of anomalous diffusion in extremely disordered systems

Jeppe Dyre, Jacob M. Jacobsen

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

    Resumé

    The universal time-dependence of the mean-square displacement for motion in a random energy landscape with equal minima is evaluated analytically and numerically in the percolation path approximation (PPA), which was recently shown by extensive computer simulations in two and three dimensions [Dyre and Schrøder, cond-mat/9601052] to be more accurate than the standard effective medium approximation (EMA). According to the PPA the universal mean-square displacement in dimensionless units as function of time varies as 1/ln^2(1/t) for t going to zero. This implies a quite different short-time behavior than predicted by the EMA, where the universal mean-square displacement varies as 1/ln(1/t) at short times [Dyre and Jacobsen, Phys. Rev. E 52 (1995) 2429].
    OriginalsprogEngelsk
    TidsskriftChemical Physics
    Vol/bind212
    Udgave nummer1
    Sider (fra-til)61-68
    ISSN0301-0104
    StatusUdgivet - 1996

    Citer dette

    Dyre, Jeppe ; Jacobsen, Jacob M. / Universality of anomalous diffusion in extremely disordered systems. I: Chemical Physics. 1996 ; Bind 212, Nr. 1. s. 61-68.
    @article{2fc1c1e052bf11dba4bc000ea68e967b,
    title = "Universality of anomalous diffusion in extremely disordered systems",
    abstract = "The universal time-dependence of the mean-square displacement for motion in a random energy landscape with equal minima is evaluated analytically and numerically in the percolation path approximation (PPA), which was recently shown by extensive computer simulations in two and three dimensions [Dyre and Schr{\o}der, cond-mat/9601052] to be more accurate than the standard effective medium approximation (EMA). According to the PPA the universal mean-square displacement in dimensionless units as function of time varies as 1/ln^2(1/t) for t going to zero. This implies a quite different short-time behavior than predicted by the EMA, where the universal mean-square displacement varies as 1/ln(1/t) at short times [Dyre and Jacobsen, Phys. Rev. E 52 (1995) 2429].",
    author = "Jeppe Dyre and Jacobsen, {Jacob M.}",
    year = "1996",
    language = "English",
    volume = "212",
    pages = "61--68",
    journal = "Chemical Physics",
    issn = "0301-0104",
    publisher = "Elsevier BV",
    number = "1",

    }

    Universality of anomalous diffusion in extremely disordered systems. / Dyre, Jeppe; Jacobsen, Jacob M.

    I: Chemical Physics, Bind 212, Nr. 1, 1996, s. 61-68.

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

    TY - JOUR

    T1 - Universality of anomalous diffusion in extremely disordered systems

    AU - Dyre, Jeppe

    AU - Jacobsen, Jacob M.

    PY - 1996

    Y1 - 1996

    N2 - The universal time-dependence of the mean-square displacement for motion in a random energy landscape with equal minima is evaluated analytically and numerically in the percolation path approximation (PPA), which was recently shown by extensive computer simulations in two and three dimensions [Dyre and Schrøder, cond-mat/9601052] to be more accurate than the standard effective medium approximation (EMA). According to the PPA the universal mean-square displacement in dimensionless units as function of time varies as 1/ln^2(1/t) for t going to zero. This implies a quite different short-time behavior than predicted by the EMA, where the universal mean-square displacement varies as 1/ln(1/t) at short times [Dyre and Jacobsen, Phys. Rev. E 52 (1995) 2429].

    AB - The universal time-dependence of the mean-square displacement for motion in a random energy landscape with equal minima is evaluated analytically and numerically in the percolation path approximation (PPA), which was recently shown by extensive computer simulations in two and three dimensions [Dyre and Schrøder, cond-mat/9601052] to be more accurate than the standard effective medium approximation (EMA). According to the PPA the universal mean-square displacement in dimensionless units as function of time varies as 1/ln^2(1/t) for t going to zero. This implies a quite different short-time behavior than predicted by the EMA, where the universal mean-square displacement varies as 1/ln(1/t) at short times [Dyre and Jacobsen, Phys. Rev. E 52 (1995) 2429].

    M3 - Journal article

    VL - 212

    SP - 61

    EP - 68

    JO - Chemical Physics

    JF - Chemical Physics

    SN - 0301-0104

    IS - 1

    ER -