Time reversibility during the ageing of materials

Till Böhmer*, Jan P. Gabriel, Lorenzo Costigliola, Jan Niklas Kociok, Tina Hecksher, Jeppe C. Dyre*, Thomas Blochowicz*

*Corresponding author

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

Physical ageing is the generic term for irreversible processes in glassy materials resulting from molecular rearrangements. One formalism for describing such ageing processes involves the concept of material time, which may be thought of as time measured on a clock whose rate changes as the glass ages. Experimental determination of material time has so far not been realized, however. Here we show how dynamic light-scattering measurements provide a way forward. We determined the material time for an ageing sample of the glass-former 1-phenyl-1-propanol after temperature jumps close to the glass transition from the time-autocorrelation function of the intensity fluctuations probed by multispeckle dynamic light scattering. These fluctuations are shown to be stationary and reversible when regarded as a function of the material time. The glass-forming colloidal synthetic clay Laponite and a chemically ageing curing epoxy are also shown to display material-time-reversible scattered-light intensity fluctuations, and simulations of an ageing binary system monitoring the potential energy confirm material-time reversibility. In addition to demonstrating direct measurements of the material time, our findings identify a fundamental property of ageing in quite different contexts that presents a challenge to the current theories of ageing.
OriginalsprogEngelsk
TidsskriftNature Physics
Vol/bind20
Sider (fra-til)637-645
Antal sider9
ISSN1745-2473
DOI
StatusUdgivet - 26 jan. 2024

Bibliografisk note

Funding Information:
This work was supported by the VILLUM Foundation’s Matter grant (VIL16515) and by the Deutsche Forschungsgemeinschaft (grants BL 923/1 and BL 1192/3).

Citer dette