The RAPIDD Ebola forecasting challenge: Model description and synthetic data generation

Marco Ajelli, Qian Zhang, Kaiyuan Sun, Stefano Merler, Laura Fumanelli, Gerardo Chowell, Lone Simonsen, Cecile Viboud, Alessandro Vespignani

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


The Ebola forecasting challenge organized by the Research and Policy for Infectious Disease Dynamics (RAPIDD) program of the Fogarty International Center relies on synthetic disease datasets generated by numerical simulations of a highly detailed spatially-structured agent-based model. We discuss here the architecture and technical steps of the challenge, leading to datasets that mimic as much as possible the data collection, reporting, and communication process experienced in the 2014–2015 West African Ebola outbreak. We provide a detailed discussion of the model's definition, the epidemiological scenarios’ construction, synthetic patient database generation and the data communication platform used during the challenge. Finally we offer a number of considerations and takeaways concerning the extension and scalability of synthetic challenges to other infectious diseases.
Sider (fra-til)3-12
Antal sider10
StatusUdgivet - mar. 2018
Udgivet eksterntJa

Citer dette