TY - JOUR
T1 - The long noncoding RNA MALAT1 predicts human islet isolation quality
AU - Wong, Wilson W.K.
AU - Jiang, Guochi
AU - Sørensen, Anja Elaine
AU - Chew, Yi Vee
AU - Lee-Maynard, Cody
AU - Liuwantara, David
AU - Williams, Lindy
AU - O'Connell, Phillip
AU - Dalgaard, Louise Torp
AU - Ma, Ronald C.
AU - Hawthorne, Wayne J.
AU - Joglekar, Mugdha
AU - Hardikar, Anandwardhan Awadhoot
N1 - This article has been found as a ’Free Version’ from the Publisher on October 2 2019. When access to the article closes, please notify [email protected]
PY - 2019/8/22
Y1 - 2019/8/22
N2 - Human islet isolation is a cost-/resource-intensive program generating islets for cell therapy in Type 1 diabetes. However, only a third of cadaveric pancreas get to clinical transplantation due to low quality/number of islets. There is a need to identify biomarker(s) that predict the quality of islets, prior to initiating their isolation. Here, we sequenced transcriptome from 18 human islet preparations stratified into three groups (Gr.1: Best quality/transplantable islets, Gr.2: Intermediary quality, Gr.3: Inferior quality/non-transplantable islets) based on routine measurements including islet purity/viability. Machine-learning algorithms involving penalized regression analyses identified 10 long-non-coding(lnc)RNAs significantly different across all group-wise comparisons (Gr1VsGr2, Gr2vsGr3, Gr1vsGr3). Two variants of Metastasis-Associated Lung Adenocarcinoma Transcript-1(MALAT1) lncRNA were common across all comparisons. We confirmed RNA-seq findings in a "validation set" of 75 human islet preparations. Finally, in 19 pancreas samples, we demonstrate that assessing the levels of MALAT1 variants alone (ROC curve AUC: 0.83) offers highest specificity in predicting post-isolation islet quality and improves the predictive potential for clinical islet transplantation when combined with Edmonton Donor Points/Body Mass Index(BMI)/North American Islet Donor Score(NAIDS). We present this resource of islet-quality-stratified lncRNA transcriptome data and identify MALAT1 as a biomarker that significantly enhances current selection methods for clinical (GMP)-grade islet isolation.
AB - Human islet isolation is a cost-/resource-intensive program generating islets for cell therapy in Type 1 diabetes. However, only a third of cadaveric pancreas get to clinical transplantation due to low quality/number of islets. There is a need to identify biomarker(s) that predict the quality of islets, prior to initiating their isolation. Here, we sequenced transcriptome from 18 human islet preparations stratified into three groups (Gr.1: Best quality/transplantable islets, Gr.2: Intermediary quality, Gr.3: Inferior quality/non-transplantable islets) based on routine measurements including islet purity/viability. Machine-learning algorithms involving penalized regression analyses identified 10 long-non-coding(lnc)RNAs significantly different across all group-wise comparisons (Gr1VsGr2, Gr2vsGr3, Gr1vsGr3). Two variants of Metastasis-Associated Lung Adenocarcinoma Transcript-1(MALAT1) lncRNA were common across all comparisons. We confirmed RNA-seq findings in a "validation set" of 75 human islet preparations. Finally, in 19 pancreas samples, we demonstrate that assessing the levels of MALAT1 variants alone (ROC curve AUC: 0.83) offers highest specificity in predicting post-isolation islet quality and improves the predictive potential for clinical islet transplantation when combined with Edmonton Donor Points/Body Mass Index(BMI)/North American Islet Donor Score(NAIDS). We present this resource of islet-quality-stratified lncRNA transcriptome data and identify MALAT1 as a biomarker that significantly enhances current selection methods for clinical (GMP)-grade islet isolation.
UR - https://insight.jci.org/articles/view/129299
U2 - 10.1172/jci.insight.129299
DO - 10.1172/jci.insight.129299
M3 - Journal article
SN - 2379-3708
VL - 4
JO - JCI Insight
JF - JCI Insight
IS - 16
M1 - e129299
ER -