The impact of gravity during head-up tilt

Johnny T. Ottesen, Mette Olufsen, Brittany Smith, Jesper Mehlsen

Publikation: KonferencebidragPaperForskningpeer review

Resumé

The impact of gravity during head-up tilt, a test often used in the clinic to diagnose patients who suffer from dizziness or frequent episodes of syncope, is not well described. This study uses mathematical modeling to analyze experimental blood pressure data measured at the level of the aorta and the carotid sinuses in a healthy volunteer. During head-up tilt the head is lifted above the heart stimulating gravitational pooling of blood in the lower extremities. This shift in volume is followed by an increase in blood pressure in the lower body, while the pressure in the head decreases, while the pressure at the level of the heart is either constant or increases. At the same time, the normal response to head-up tilt is an increase in heart rate. The change in posture, and subsequent change in heart rate, is believed to be mediated via baroreflex inhibition. Traditional understanding of the baroreceptor system is that inhibition is a result of a blood pressure drop. However, only the carotid sinus blood pressure is decreased during head-up tilt, suggesting that the receptors at this location are more prominent than the receptors in the aortic arch. To explore this hypothesis further, we developed a model predicting hydrostatic height between the two locations. Results from this model were compared with measurements. Furthermore, we show, using a differential equations model predicting blood pressure, that it is possible to predict blood pressure measured at the level of the carotid sinuses using heart rate as an input. Finally, we discuss our results in relation to measurements obtained at the two locations.
OriginalsprogEngelsk
Publikationsdato2011
Antal sider3
DOI
StatusUdgivet - 2011
Begivenhed33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society - Boston, MA, USA
Varighed: 30 aug. 20113 sep. 2011
Konferencens nummer: 87843
http://embc2011.embs.org/

Konference

Konference33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Nummer87843
LandUSA
ByBoston, MA
Periode30/08/201103/09/2011
Internetadresse

Citer dette

Ottesen, J. T., Olufsen, M., Smith, B., & Mehlsen, J. (2011). The impact of gravity during head-up tilt. Afhandling præsenteret på 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA. https://doi.org/10.1109/IEMBS.2011.6090669
Ottesen, Johnny T. ; Olufsen, Mette ; Smith, Brittany ; Mehlsen, Jesper. / The impact of gravity during head-up tilt. Afhandling præsenteret på 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA.3 s.
@conference{da9498b82bc8477897c7c6f4fd58e3c0,
title = "The impact of gravity during head-up tilt",
abstract = "The impact of gravity during head-up tilt, a test often used in the clinic to diagnose patients who suffer from dizziness or frequent episodes of syncope, is not well described. This study uses mathematical modeling to analyze experimental blood pressure data measured at the level of the aorta and the carotid sinuses in a healthy volunteer. During head-up tilt the head is lifted above the heart stimulating gravitational pooling of blood in the lower extremities. This shift in volume is followed by an increase in blood pressure in the lower body, while the pressure in the head decreases, while the pressure at the level of the heart is either constant or increases. At the same time, the normal response to head-up tilt is an increase in heart rate. The change in posture, and subsequent change in heart rate, is believed to be mediated via baroreflex inhibition. Traditional understanding of the baroreceptor system is that inhibition is a result of a blood pressure drop. However, only the carotid sinus blood pressure is decreased during head-up tilt, suggesting that the receptors at this location are more prominent than the receptors in the aortic arch. To explore this hypothesis further, we developed a model predicting hydrostatic height between the two locations. Results from this model were compared with measurements. Furthermore, we show, using a differential equations model predicting blood pressure, that it is possible to predict blood pressure measured at the level of the carotid sinuses using heart rate as an input. Finally, we discuss our results in relation to measurements obtained at the two locations.",
author = "Ottesen, {Johnny T.} and Mette Olufsen and Brittany Smith and Jesper Mehlsen",
year = "2011",
doi = "10.1109/IEMBS.2011.6090669",
language = "English",
note = "null ; Conference date: 30-08-2011 Through 03-09-2011",
url = "http://embc2011.embs.org/",

}

Ottesen, JT, Olufsen, M, Smith, B & Mehlsen, J 2011, 'The impact of gravity during head-up tilt' Paper fremlagt ved 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30/08/2011 - 03/09/2011, . https://doi.org/10.1109/IEMBS.2011.6090669

The impact of gravity during head-up tilt. / Ottesen, Johnny T.; Olufsen, Mette; Smith, Brittany; Mehlsen, Jesper.

2011. Afhandling præsenteret på 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA.

Publikation: KonferencebidragPaperForskningpeer review

TY - CONF

T1 - The impact of gravity during head-up tilt

AU - Ottesen, Johnny T.

AU - Olufsen, Mette

AU - Smith, Brittany

AU - Mehlsen, Jesper

PY - 2011

Y1 - 2011

N2 - The impact of gravity during head-up tilt, a test often used in the clinic to diagnose patients who suffer from dizziness or frequent episodes of syncope, is not well described. This study uses mathematical modeling to analyze experimental blood pressure data measured at the level of the aorta and the carotid sinuses in a healthy volunteer. During head-up tilt the head is lifted above the heart stimulating gravitational pooling of blood in the lower extremities. This shift in volume is followed by an increase in blood pressure in the lower body, while the pressure in the head decreases, while the pressure at the level of the heart is either constant or increases. At the same time, the normal response to head-up tilt is an increase in heart rate. The change in posture, and subsequent change in heart rate, is believed to be mediated via baroreflex inhibition. Traditional understanding of the baroreceptor system is that inhibition is a result of a blood pressure drop. However, only the carotid sinus blood pressure is decreased during head-up tilt, suggesting that the receptors at this location are more prominent than the receptors in the aortic arch. To explore this hypothesis further, we developed a model predicting hydrostatic height between the two locations. Results from this model were compared with measurements. Furthermore, we show, using a differential equations model predicting blood pressure, that it is possible to predict blood pressure measured at the level of the carotid sinuses using heart rate as an input. Finally, we discuss our results in relation to measurements obtained at the two locations.

AB - The impact of gravity during head-up tilt, a test often used in the clinic to diagnose patients who suffer from dizziness or frequent episodes of syncope, is not well described. This study uses mathematical modeling to analyze experimental blood pressure data measured at the level of the aorta and the carotid sinuses in a healthy volunteer. During head-up tilt the head is lifted above the heart stimulating gravitational pooling of blood in the lower extremities. This shift in volume is followed by an increase in blood pressure in the lower body, while the pressure in the head decreases, while the pressure at the level of the heart is either constant or increases. At the same time, the normal response to head-up tilt is an increase in heart rate. The change in posture, and subsequent change in heart rate, is believed to be mediated via baroreflex inhibition. Traditional understanding of the baroreceptor system is that inhibition is a result of a blood pressure drop. However, only the carotid sinus blood pressure is decreased during head-up tilt, suggesting that the receptors at this location are more prominent than the receptors in the aortic arch. To explore this hypothesis further, we developed a model predicting hydrostatic height between the two locations. Results from this model were compared with measurements. Furthermore, we show, using a differential equations model predicting blood pressure, that it is possible to predict blood pressure measured at the level of the carotid sinuses using heart rate as an input. Finally, we discuss our results in relation to measurements obtained at the two locations.

U2 - 10.1109/IEMBS.2011.6090669

DO - 10.1109/IEMBS.2011.6090669

M3 - Paper

ER -

Ottesen JT, Olufsen M, Smith B, Mehlsen J. The impact of gravity during head-up tilt. 2011. Afhandling præsenteret på 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA. https://doi.org/10.1109/IEMBS.2011.6090669