TY - JOUR
T1 - Structural and Rheological Properties of Temperature-Responsive Amphiphilic Triblock Copolymers in Aqueous Media
AU - Nielsen, Josefine Eilsø
AU - Zhu, Kaizheng
AU - Sande, Sverre Arne
AU - Kováčik, Lubomír
AU - Cmarko, Dušan
AU - Knudsen, Kenneth D.
AU - Nyström, Bo
PY - 2017/5/11
Y1 - 2017/5/11
N2 - Thermoresponsive amphiphilic biodegradable block copolymers of the type poly(ε-caprolactone-co-lactide)-poly(ethylene glycol)-poly(ε-caprolactone-co-lactide) (PCLA-PEGm-PCLA) have great potential for various biomedical applications. In the present study, we have surveyed the effects of PEG spacer length (m = 1000 and 1500), temperature, and polymer concentration on the self-assembling process to form supramolecular structures in aqueous solutions of the PCLA-PEGm-PCLA copolymer. This copolymer has a lower critical solution temperature, and the cloud point depends on both concentration and PEG length. Thermoreversible hydrogels are formed in the semidilute regime; the gel windows in the phase diagrams can be tuned by the concentration and length of the PEG spacer. The rheological properties of both dilute and semidilute samples were characterized; especially the sol-to-gel transition was examined. Small-angle neutron scattering (SANS) experiments reveal fundamental structural differences between the two copolymers for both dilute and semidilute samples. The intensity profiles for the copolymer with the long PEG spacer could be described by a spherical core-shell model over a broad temperature domain, whereas the copolymer with the short hydrophilic spacer forms rod-like species over an extended temperature range. This finding is supported by cryo-TEM images. At temperatures approaching macroscopic phase separation, both copolymers seem to assume extended rod-like structures.
AB - Thermoresponsive amphiphilic biodegradable block copolymers of the type poly(ε-caprolactone-co-lactide)-poly(ethylene glycol)-poly(ε-caprolactone-co-lactide) (PCLA-PEGm-PCLA) have great potential for various biomedical applications. In the present study, we have surveyed the effects of PEG spacer length (m = 1000 and 1500), temperature, and polymer concentration on the self-assembling process to form supramolecular structures in aqueous solutions of the PCLA-PEGm-PCLA copolymer. This copolymer has a lower critical solution temperature, and the cloud point depends on both concentration and PEG length. Thermoreversible hydrogels are formed in the semidilute regime; the gel windows in the phase diagrams can be tuned by the concentration and length of the PEG spacer. The rheological properties of both dilute and semidilute samples were characterized; especially the sol-to-gel transition was examined. Small-angle neutron scattering (SANS) experiments reveal fundamental structural differences between the two copolymers for both dilute and semidilute samples. The intensity profiles for the copolymer with the long PEG spacer could be described by a spherical core-shell model over a broad temperature domain, whereas the copolymer with the short hydrophilic spacer forms rod-like species over an extended temperature range. This finding is supported by cryo-TEM images. At temperatures approaching macroscopic phase separation, both copolymers seem to assume extended rod-like structures.
U2 - 10.1021/acs.jpcb.7b01174
DO - 10.1021/acs.jpcb.7b01174
M3 - Journal article
C2 - 28430448
AN - SCOPUS:85020234740
SN - 1520-6106
VL - 121
SP - 4885
EP - 4899
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 18
ER -