TY - JOUR
T1 - Small-angle neutron scattering study of the ultrastructure of chloroplast thylakoid membranes - Periodicity and structural flexibility of the stroma lamellae
AU - Posselt, Dorthe
AU - Nagy, Gergely
AU - Kirkensgaard, Jacob J. K.
AU - Holm, Jens Kai
AU - Aagaard, Thomas H
AU - Timmins, Peter
AU - Retfalvi, Eszter
AU - Rosta, Laszlo
AU - Kovacs, Laszlo
AU - Garab, Gyozo
PY - 2012
Y1 - 2012
N2 - The multilamellar organization of freshly isolated spinach and pea chloroplast thylakoid membranes was studied using small-angle neutron scattering. A broad peak at similar to 0.02 angstrom(-1) is ascribed to diffraction from domains of ordered, unappressed stroma lamellae, revealing a repeat distance of 294 angstrom +/- 7 angstrom in spinach and 345 angstrom +/- 11 angstrom in pea. The peak position and hence the repeat distance of stroma lamellae is strongly dependent on the osmolarity and the ionic strength of the suspension medium, as demonstrated by varying the sorbitol and the Mg++-concentration in the sample. For pea thylakoid membranes, we show that the repeat distance decreases when illuminating the sample with white light, in accordance with our earlier results on spinach, also regarding the observation that addition of an uncoupler prohibits the light-induced structural changes, a strong indication that these changes are driven by the transmembrane proton gradient. We show that the magnitude of the shrinkage is strongly dependent on light intensity and that the repeat distance characteristic of the dark state after illumination is different from the initial dark state. Prolonged strong illumination leads to irreversible changes and swelling as reflected in increased repeat distances. The observed reorganizations are discussed within the frames of the current structural models of the granum-stroma thylakoid membrane assembly and the regulatory mechanisms in response to variations in the environmental conditions in vivo.
AB - The multilamellar organization of freshly isolated spinach and pea chloroplast thylakoid membranes was studied using small-angle neutron scattering. A broad peak at similar to 0.02 angstrom(-1) is ascribed to diffraction from domains of ordered, unappressed stroma lamellae, revealing a repeat distance of 294 angstrom +/- 7 angstrom in spinach and 345 angstrom +/- 11 angstrom in pea. The peak position and hence the repeat distance of stroma lamellae is strongly dependent on the osmolarity and the ionic strength of the suspension medium, as demonstrated by varying the sorbitol and the Mg++-concentration in the sample. For pea thylakoid membranes, we show that the repeat distance decreases when illuminating the sample with white light, in accordance with our earlier results on spinach, also regarding the observation that addition of an uncoupler prohibits the light-induced structural changes, a strong indication that these changes are driven by the transmembrane proton gradient. We show that the magnitude of the shrinkage is strongly dependent on light intensity and that the repeat distance characteristic of the dark state after illumination is different from the initial dark state. Prolonged strong illumination leads to irreversible changes and swelling as reflected in increased repeat distances. The observed reorganizations are discussed within the frames of the current structural models of the granum-stroma thylakoid membrane assembly and the regulatory mechanisms in response to variations in the environmental conditions in vivo.
U2 - 10.1016/j.bbabio.2012.01.012
DO - 10.1016/j.bbabio.2012.01.012
M3 - Journal article
SN - 0005-2728
VL - 1817
SP - 1220
EP - 1228
JO - B B A - Bioenergetics
JF - B B A - Bioenergetics
IS - 8
ER -