TY - JOUR
T1 - Seagrass-Mediated Phosphorus and Iron Solubilization in Tropical Sediments
AU - Brodersen, Kasper Elgetti
AU - Koren, Klaus
AU - Moßhammer, Maria
AU - Ralph, Peter J.
AU - Kühl, Michael
AU - Santner, Jakob
PY - 2017/12/19
Y1 - 2017/12/19
N2 - Tropical seagrasses are nutrient-limited owing to the strong phosphorus fixation capacity of carbonate-rich sediments, yet they form densely vegetated, multispecies meadows in oligotrophic tropical waters. Using a novel combination of high-resolution, two-dimensional chemical imaging of O2, pH, iron, sulfide, calcium, and phosphorus, we found that tropical seagrasses are able to mobilize the essential nutrients iron and phosphorus in their rhizosphere via multiple biogeochemical pathways. We show that tropical seagrasses mobilize phosphorus and iron within their rhizosphere via plant-induced local acidification, leading to dissolution of carbonates and release of phosphate, and via local stimulation of microbial sulfide production, causing reduction of insoluble Fe(III) oxyhydroxides to dissolved Fe(II) with concomitant phosphate release into the rhizosphere porewater. These nutrient mobilization mechanisms have a direct link to seagrass-derived radial O2 loss and secretion of dissolved organic carbon from the below-ground tissue into the rhizosphere. Our demonstration of seagrass-derived rhizospheric phosphorus and iron mobilization explains why seagrasses are widely distributed in oligotrophic tropical waters.
AB - Tropical seagrasses are nutrient-limited owing to the strong phosphorus fixation capacity of carbonate-rich sediments, yet they form densely vegetated, multispecies meadows in oligotrophic tropical waters. Using a novel combination of high-resolution, two-dimensional chemical imaging of O2, pH, iron, sulfide, calcium, and phosphorus, we found that tropical seagrasses are able to mobilize the essential nutrients iron and phosphorus in their rhizosphere via multiple biogeochemical pathways. We show that tropical seagrasses mobilize phosphorus and iron within their rhizosphere via plant-induced local acidification, leading to dissolution of carbonates and release of phosphate, and via local stimulation of microbial sulfide production, causing reduction of insoluble Fe(III) oxyhydroxides to dissolved Fe(II) with concomitant phosphate release into the rhizosphere porewater. These nutrient mobilization mechanisms have a direct link to seagrass-derived radial O2 loss and secretion of dissolved organic carbon from the below-ground tissue into the rhizosphere. Our demonstration of seagrass-derived rhizospheric phosphorus and iron mobilization explains why seagrasses are widely distributed in oligotrophic tropical waters.
U2 - 10.1021/acs.est.7b03878
DO - 10.1021/acs.est.7b03878
M3 - Journal article
C2 - 29149570
AN - SCOPUS:85038836156
SN - 0013-936X
VL - 51
SP - 14155
EP - 14163
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 24
ER -