Round and round it goes

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Resumé

We discuss the coupling of a rotating flywheel with a nonrotating flywheel. We find an expression for the tangential force between the wheels and an expression for the change in angular momentum of the system. Then, we calculate the fraction of rotational kinetic energy which is transferred from the rotating flywheel to the nonrotating flywheel. The theoretical results are compared with the experimental results in the article Mário S M N F Gomes et al, The 'Spinning disk touches stationary disk' problem revisited: an experimental approach (2018 Eur. J. Phys. 39 045709). We then introduce a series of initially nonrotating flywheels between the two original flywheels which are coupled and decoupled, beginning with coupling between the original rotating flywheel and the first wheel in the series and finally coupling between the last flywheel in the series with the original nonrotating flywheel. The condition for maximum energy transfer from the original rotating flywheel to the original nonrotating flywheel for a given number of flywheels will be shown to be achieved when the masses of the flywheels constitute a geometric series if all the flywheels are of the same type. If the flywheels are not of the same type the maximum is achieved when the product of the K-factors of the inertial moments and the masses constitute a geometric series.
OriginalsprogEngelsk
Artikelnummer015004
TidsskriftEuropean Journal of Physics
Vol/bind40
Udgave nummer1
Antal sider15
ISSN0143-0807
DOI
StatusUdgivet - 2019

Citer dette

@article{b09e445aa379454aa6caf1e6ef2d7e33,
title = "Round and round it goes",
abstract = "We discuss the coupling of a rotating flywheel with a nonrotating flywheel. We find an expression for the tangential force between the wheels and an expression for the change in angular momentum of the system. Then, we calculate the fraction of rotational kinetic energy which is transferred from the rotating flywheel to the nonrotating flywheel. The theoretical results are compared with the experimental results in the article M{\'a}rio S M N F Gomes et al, The 'Spinning disk touches stationary disk' problem revisited: an experimental approach (2018 Eur. J. Phys. 39 045709). We then introduce a series of initially nonrotating flywheels between the two original flywheels which are coupled and decoupled, beginning with coupling between the original rotating flywheel and the first wheel in the series and finally coupling between the last flywheel in the series with the original nonrotating flywheel. The condition for maximum energy transfer from the original rotating flywheel to the original nonrotating flywheel for a given number of flywheels will be shown to be achieved when the masses of the flywheels constitute a geometric series if all the flywheels are of the same type. If the flywheels are not of the same type the maximum is achieved when the product of the K-factors of the inertial moments and the masses constitute a geometric series.",
author = "Andersen, {Poul Winther}",
year = "2019",
doi = "10.1088/1361-6404/aaee2c",
language = "English",
volume = "40",
journal = "European Journal of Physics",
issn = "0143-0807",
publisher = "Institute of Physics Publishing Ltd.",
number = "1",

}

Round and round it goes. / Andersen, Poul Winther.

I: European Journal of Physics, Bind 40, Nr. 1, 015004, 2019.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

TY - JOUR

T1 - Round and round it goes

AU - Andersen, Poul Winther

PY - 2019

Y1 - 2019

N2 - We discuss the coupling of a rotating flywheel with a nonrotating flywheel. We find an expression for the tangential force between the wheels and an expression for the change in angular momentum of the system. Then, we calculate the fraction of rotational kinetic energy which is transferred from the rotating flywheel to the nonrotating flywheel. The theoretical results are compared with the experimental results in the article Mário S M N F Gomes et al, The 'Spinning disk touches stationary disk' problem revisited: an experimental approach (2018 Eur. J. Phys. 39 045709). We then introduce a series of initially nonrotating flywheels between the two original flywheels which are coupled and decoupled, beginning with coupling between the original rotating flywheel and the first wheel in the series and finally coupling between the last flywheel in the series with the original nonrotating flywheel. The condition for maximum energy transfer from the original rotating flywheel to the original nonrotating flywheel for a given number of flywheels will be shown to be achieved when the masses of the flywheels constitute a geometric series if all the flywheels are of the same type. If the flywheels are not of the same type the maximum is achieved when the product of the K-factors of the inertial moments and the masses constitute a geometric series.

AB - We discuss the coupling of a rotating flywheel with a nonrotating flywheel. We find an expression for the tangential force between the wheels and an expression for the change in angular momentum of the system. Then, we calculate the fraction of rotational kinetic energy which is transferred from the rotating flywheel to the nonrotating flywheel. The theoretical results are compared with the experimental results in the article Mário S M N F Gomes et al, The 'Spinning disk touches stationary disk' problem revisited: an experimental approach (2018 Eur. J. Phys. 39 045709). We then introduce a series of initially nonrotating flywheels between the two original flywheels which are coupled and decoupled, beginning with coupling between the original rotating flywheel and the first wheel in the series and finally coupling between the last flywheel in the series with the original nonrotating flywheel. The condition for maximum energy transfer from the original rotating flywheel to the original nonrotating flywheel for a given number of flywheels will be shown to be achieved when the masses of the flywheels constitute a geometric series if all the flywheels are of the same type. If the flywheels are not of the same type the maximum is achieved when the product of the K-factors of the inertial moments and the masses constitute a geometric series.

U2 - 10.1088/1361-6404/aaee2c

DO - 10.1088/1361-6404/aaee2c

M3 - Journal article

VL - 40

JO - European Journal of Physics

JF - European Journal of Physics

SN - 0143-0807

IS - 1

M1 - 015004

ER -