Peptide Pattern Recognition for high-throughput protein sequence analysis and clustering

Publikation: Bidrag til tidsskriftTidsskriftartikelForskning


Large collections of protein sequences with divergent sequences are tedious to analyze for understanding their phylogenetic or structure-function relation. Peptide Pattern Recognition is an algorithm that was developed to facilitate this task but the previous version does only allow a limited number of sequences as input. I implemented Peptide Pattern Recognition as a multithread software designed to handle large numbers of sequences and perform analysis in a reasonable time frame. Benchmarking showed that the new implementation of Peptide Pattern Recognition is twenty times faster than the previous implementation on a small protein collection with 673 MAP kinase sequences. In addition, the new implementation could analyze a large protein collection with 48,570 Glycosyl Transferase family 20 sequences without reaching its upper limit on a desktop computer.
Peptide Pattern Recognition is a useful software for providing comprehensive groups of related sequences from large protein sequence collections.
StatusUdgivet - feb. 2018
Udgivet eksterntJa

Citer dette