TY - JOUR
T1 - Nfat5 is involved in the hyperosmotic regulation of Tmem184b
T2 - a putative modulator of ibuprofen transport in renal MDCK I cells
AU - Jørgensen, Rune Nørgaard
AU - Christensen, Kenneth Vielsted
AU - Holm, René
AU - Nielsen, Carsten Uhd
PY - 2019
Y1 - 2019
N2 - Nuclear factor of activated T cells 5 (NFAT5) is a transcription factor involved in the regulation of several genes involved in the response to extracellular hyperosmolality. Recently, the uptake of ibuprofen by an as yet unknown carrier was suggested in Madin‐Darby canine kidney (MDCK) I cells exposed to hyperosmolality. We therefore speculated that Nfat5 could be involved in the regulation of this ibuprofen carrier. Reverse transfection with siRNA against Nfat5 was used to knock down Nfat5 in MDCK I cells. The uptake of both radiolabelled taurine and ibuprofen was measured in MDCK I cells, first treated with siRNA against Nfat5 and afterwards cultivated with raffinose‐supplemented normal growth medium (500 mOsm) for 24 h. The siRNA transfection resulted in knockdown of Nfat5, and uptake of both taurine and ibuprofen was significantly decreased in transfected MDCK I cells. The decrease in ibuprofen uptake indicates that Nfat5 is involved in upregulation of the ibuprofen carrier. A transcriptome analysis of MDCK I cells treated with siRNA against Nfat5 revealed 989 genes upregulated by Nfat5 during hyperosmotic exposure. From these genes, the gene product transmembrane protein 184b was found to be regulated by Nfat5, and Tmem184b was the only potential gene product involved in the uptake of ibuprofen in MDCK I cells.
AB - Nuclear factor of activated T cells 5 (NFAT5) is a transcription factor involved in the regulation of several genes involved in the response to extracellular hyperosmolality. Recently, the uptake of ibuprofen by an as yet unknown carrier was suggested in Madin‐Darby canine kidney (MDCK) I cells exposed to hyperosmolality. We therefore speculated that Nfat5 could be involved in the regulation of this ibuprofen carrier. Reverse transfection with siRNA against Nfat5 was used to knock down Nfat5 in MDCK I cells. The uptake of both radiolabelled taurine and ibuprofen was measured in MDCK I cells, first treated with siRNA against Nfat5 and afterwards cultivated with raffinose‐supplemented normal growth medium (500 mOsm) for 24 h. The siRNA transfection resulted in knockdown of Nfat5, and uptake of both taurine and ibuprofen was significantly decreased in transfected MDCK I cells. The decrease in ibuprofen uptake indicates that Nfat5 is involved in upregulation of the ibuprofen carrier. A transcriptome analysis of MDCK I cells treated with siRNA against Nfat5 revealed 989 genes upregulated by Nfat5 during hyperosmotic exposure. From these genes, the gene product transmembrane protein 184b was found to be regulated by Nfat5, and Tmem184b was the only potential gene product involved in the uptake of ibuprofen in MDCK I cells.
U2 - 10.1002/2211-5463.12630
DO - 10.1002/2211-5463.12630
M3 - Journal article
SN - 2211-5463
VL - 9
SP - 1071
EP - 1081
JO - FEBS Open Bio
JF - FEBS Open Bio
IS - 6
ER -