Michaelis - Menten equation for degradation of insoluble substrate

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


Kinetic studies of homogeneous enzyme reactions where both the substrate and enzyme are soluble have been well described by the Michaelis–Menten (MM) equation for more than a century. However, many reactions are taking place at the interface of a solid substrate and enzyme in solution. Such heterogeneous reactions are abundant both in vivo and in industrial application of enzymes but it is not clear whether traditional enzyme kinetic theory developed for homogeneous catalysis can be applied. Since the molar concentration of surface accessible sites (attack-sites) often is unknown for a solid substrate it is difficult to assess whether the requirement of the MM equation is met. In this paper we study a simple kinetic model, where removal of attack sites expose new ones which preserve the total accessible substrate, and denote this approach the substrate conserving model. The kinetic equations are solved in closed form, both steady states and progress curves, for any admissible values of initial conditions and rate constants. The model is shown to merge with the MM equation and the reverse MM equation when these are valid. The relation between available molar concentration of attack sites and mass load of substrate is analyzed and this introduces an extra parameter to the equations. Various experimental setups to practically and reliably estimate all parameters are discussed.
TidsskriftMathematical Biosciences
Sider (fra-til)93-97
Antal sider5
StatusUdgivet - 2018


  • Enzyme kinetics
  • Michaelis–Menten
  • parameter estimation

Citer dette