TY - JOUR
T1 - Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans
AU - Aslan, Derya
AU - Dahl Andersen, Mille
AU - Gede, Lene Bjerring
AU - de Franca, Tine Kellemann
AU - Rubek Jørgensen, Sara
AU - Schwarz, Peter
AU - Jørgensen, Niklas Rye
PY - 2012
Y1 - 2012
N2 - Intermittent low-dose treatment with parathyroid hormone (PTH) analogues has become widely used in the treatment of severe osteoporosis. During normal physiological conditions, PTH stimulates both bone formation and resorption, and in patients with primary hyperparathyroidism, bone loss is frequent. However, development of the biochemical measurement of PTH in the 1980s led us to understand the regulation of PTH secretion and calcium metabolism which subsequently paved the way for the use of PTH as an anabolic treatment of osteoporosis as, when given intermittently, it has strong anabolic effects in bone. This could not have taken place without the basic understanding achieved by the biochemical measurements of PTH. The stimulatory effects of PTH on bone formation have been explained by the so-called ‘anabolic window’, which means that during PTH treatment, bone formation is in excess over bone resorption during the first 6–18 months. This is due to the following: (1) PTH up-regulates c-fos expression in bone cells, (2) IGF is essential for PTH's anabolic effect, (3) bone lining cells are driven to differentiate into osteoblasts, (4) mesenchymal stem cells adhesion to bone surface is enhanced, (5) PTH has a direct antiapoptotic effect on osteoblasts and (6) when PTH interferes with remodelling, the osteoblasts over-compensate, and (7) PTH also decreases sclerostin levels, thereby removing inhibition of Wnt signalling which is required for PTH's anabolic actions. Thus, the net formative effect of PTH given in intermittent treatment emerges through a complex network of pathways. In summary, the effects of PTH on bone turnover are dependent on the mode and dose of administration and studies investigating the mechanisms underlying this effect are reviewed in this article.
AB - Intermittent low-dose treatment with parathyroid hormone (PTH) analogues has become widely used in the treatment of severe osteoporosis. During normal physiological conditions, PTH stimulates both bone formation and resorption, and in patients with primary hyperparathyroidism, bone loss is frequent. However, development of the biochemical measurement of PTH in the 1980s led us to understand the regulation of PTH secretion and calcium metabolism which subsequently paved the way for the use of PTH as an anabolic treatment of osteoporosis as, when given intermittently, it has strong anabolic effects in bone. This could not have taken place without the basic understanding achieved by the biochemical measurements of PTH. The stimulatory effects of PTH on bone formation have been explained by the so-called ‘anabolic window’, which means that during PTH treatment, bone formation is in excess over bone resorption during the first 6–18 months. This is due to the following: (1) PTH up-regulates c-fos expression in bone cells, (2) IGF is essential for PTH's anabolic effect, (3) bone lining cells are driven to differentiate into osteoblasts, (4) mesenchymal stem cells adhesion to bone surface is enhanced, (5) PTH has a direct antiapoptotic effect on osteoblasts and (6) when PTH interferes with remodelling, the osteoblasts over-compensate, and (7) PTH also decreases sclerostin levels, thereby removing inhibition of Wnt signalling which is required for PTH's anabolic actions. Thus, the net formative effect of PTH given in intermittent treatment emerges through a complex network of pathways. In summary, the effects of PTH on bone turnover are dependent on the mode and dose of administration and studies investigating the mechanisms underlying this effect are reviewed in this article.
U2 - 10.3109/00365513.2011.624631
DO - 10.3109/00365513.2011.624631
M3 - Journal article
SN - 0036-5513
VL - 72
SP - 14
EP - 22
JO - Scandinavian Journal of Clinical & Laboratory Investigation
JF - Scandinavian Journal of Clinical & Laboratory Investigation
IS - 1
ER -