Abstract
This study explores the problem of inferring locations for individual tweets. We scrutinize Twitter user timelines in a novel fashion. First of all, we split each user's tweet timeline temporally into a number of clusters, each tending to imply a distinct location. Subsequently, we adapt machine learning models to our setting and design classifiers that classify each tweet cluster into one of the pre-defined location classes at the city level. Extensive experiments on a large set of real Twitter data suggest that our models are effective at inferring locations for non-geotagged tweets and outperform the state-of-the-art approaches significantly in terms of inference accuracy.
Originalsprog | Engelsk |
---|---|
Titel | 35th IEEE International Conference on Data Engineering, ICDE 2019 |
Antal sider | 2 |
Forlag | IEEE |
Publikationsdato | 2019 |
Sider | 2111-2112 |
Artikelnummer | 8731425 |
ISBN (Trykt) | 978-1-5386-7475-8 |
ISBN (Elektronisk) | 978-1-5386-7474-1 |
DOI | |
Status | Udgivet - 2019 |
Udgivet eksternt | Ja |
Begivenhed | 35th International Conference on Data Engineering (ICDE) - Macau, Kina Varighed: 8 apr. 2019 → 11 apr. 2019 Konferencens nummer: 35 https://www.computer.org/csdl/proceedings/icde/2019/1aDSOMTGCIw |
Konference
Konference | 35th International Conference on Data Engineering (ICDE) |
---|---|
Nummer | 35 |
Land/Område | Kina |
By | Macau |
Periode | 08/04/2019 → 11/04/2019 |
Internetadresse |
Navn | IEEE Transactions on Knowledge and Data Engineering |
---|---|
ISSN | 1041-4347 |