Isomorphs in nanoconfined liquids

Benjamin M.G.D. Carter, C. Patrick Royall, Jeppe C. Dyre, Trond S. Ingebrigtsen*

*Corresponding author

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

We study in this paper the possible existence of Roskilde-simple liquids and their isomorphs in a rough-wall nanoconfinement. Isomorphs are curves in the thermodynamic phase diagram along which structure and dynamics are invariant in suitable nondimensionalized units. Two model liquids using molecular dynamics computer simulations are considered: the single-component Lennard-Jones (LJ) liquid and the Kob-Andersen binary LJ mixture, both of which in the bulk phases are known to have good isomorphs. Nanoconfinement is implemented by adopting a slit-pore geometry with fcc crystalline walls; this implies inhomogenous density profiles both parallel and perpendicular to the confining walls. Despite this fact and consistent with an earlier study [Ingebrigtsen et al., Phys. Rev. Lett., 2013, 111, 235901] we find that these two nanoconfined liquids have isomorphs to a good approximation. More specifically, we show good invariance along the isomorphs of inhomogenous density profiles, mean-square displacements, and higher-order structures probed using the topological cluster classification algorithm. Our study thus provides an alternative framework for understanding nanoconfined liquids. This journal is

OriginalsprogEngelsk
TidsskriftSoft Matter
Vol/bind17
Udgave nummer38
Sider (fra-til)8662-8677
Antal sider16
ISSN1744-683X
DOI
StatusUdgivet - 14 okt. 2021

Bibliografisk note

Funding Information:
B. M. G. D. C., J. C. D., and T. S. I. are supported by the VILLUM Foundation’s Matter Grant (No. 16515). B. M. G. D. C. acknowledges funding from EPSRC with grant code EP/L016648/1.

Citer dette