Inorganic ion composition in Tardigrada

cryptobionts contain large fraction of unidentified organic solutes

Kenneth Agerlin Halberg, Kristine Wulff Larsen, Aslak Jørgensen, Hans Ramløv, Nadja Møbjerg

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

    Resumé

    Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na+ and Cl− are the principal inorganic ions in tardigrade fluids, albeit other ions, i.e. K+, NH4+, Ca2+, Mg2+, F−, SO42− and PO43− were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared with that of the external medium (Na+, ×70–800; K+, ×20–90; Ca2+ and Mg2+, ×30–200; F−, ×160–1040, Cl−, ×20–50; PO43−, ×700–2800; SO42−, ×30–150). In contrast, in the marine species H. crispae, Na+, Cl− and SO42− are almost in ionic equilibrium with (brackish) salt water, while K+, Ca2+, Mg2+ and F− are only slightly concentrated (×2–10). An anion deficit of ~120 mEq l−1 in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg−1 in R. coronifer to 961±43 mOsm kg−1 in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis
    OriginalsprogEngelsk
    TidsskriftJournal of Experimental Biology
    Vol/bind216
    Sider (fra-til)1235-1243
    Antal sider9
    ISSN0022-0949
    DOI
    StatusUdgivet - 2013

    Emneord

    • ion
    • tardigrade
    • cryptobiosis
    • anhydrobiosis
    • marine

    Citer dette

    Halberg, Kenneth Agerlin ; Wulff Larsen, Kristine ; Jørgensen, Aslak ; Ramløv, Hans ; Møbjerg, Nadja. / Inorganic ion composition in Tardigrada : cryptobionts contain large fraction of unidentified organic solutes. I: Journal of Experimental Biology. 2013 ; Bind 216. s. 1235-1243.
    @article{e0ff8f0659244ae2ba0dbcdc5b881e23,
    title = "Inorganic ion composition in Tardigrada: cryptobionts contain large fraction of unidentified organic solutes",
    abstract = "Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na+ and Cl− are the principal inorganic ions in tardigrade fluids, albeit other ions, i.e. K+, NH4+, Ca2+, Mg2+, F−, SO42− and PO43− were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared with that of the external medium (Na+, ×70–800; K+, ×20–90; Ca2+ and Mg2+, ×30–200; F−, ×160–1040, Cl−, ×20–50; PO43−, ×700–2800; SO42−, ×30–150). In contrast, in the marine species H. crispae, Na+, Cl− and SO42− are almost in ionic equilibrium with (brackish) salt water, while K+, Ca2+, Mg2+ and F− are only slightly concentrated (×2–10). An anion deficit of ~120 mEq l−1 in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg−1 in R. coronifer to 961±43 mOsm kg−1 in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis",
    keywords = "ion, tardigrade, cryptobiosis, anhydrobiosis, marine",
    author = "Halberg, {Kenneth Agerlin} and {Wulff Larsen}, Kristine and Aslak J{\o}rgensen and Hans Raml{\o}v and Nadja M{\o}bjerg",
    year = "2013",
    doi = "10.1242/jeb.075531",
    language = "English",
    volume = "216",
    pages = "1235--1243",
    journal = "Journal of Experimental Biology",
    issn = "0022-0949",
    publisher = "The/Company of Biologists Ltd.",

    }

    Inorganic ion composition in Tardigrada : cryptobionts contain large fraction of unidentified organic solutes. / Halberg, Kenneth Agerlin; Wulff Larsen, Kristine; Jørgensen, Aslak; Ramløv, Hans; Møbjerg, Nadja.

    I: Journal of Experimental Biology, Bind 216, 2013, s. 1235-1243.

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

    TY - JOUR

    T1 - Inorganic ion composition in Tardigrada

    T2 - cryptobionts contain large fraction of unidentified organic solutes

    AU - Halberg, Kenneth Agerlin

    AU - Wulff Larsen, Kristine

    AU - Jørgensen, Aslak

    AU - Ramløv, Hans

    AU - Møbjerg, Nadja

    PY - 2013

    Y1 - 2013

    N2 - Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na+ and Cl− are the principal inorganic ions in tardigrade fluids, albeit other ions, i.e. K+, NH4+, Ca2+, Mg2+, F−, SO42− and PO43− were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared with that of the external medium (Na+, ×70–800; K+, ×20–90; Ca2+ and Mg2+, ×30–200; F−, ×160–1040, Cl−, ×20–50; PO43−, ×700–2800; SO42−, ×30–150). In contrast, in the marine species H. crispae, Na+, Cl− and SO42− are almost in ionic equilibrium with (brackish) salt water, while K+, Ca2+, Mg2+ and F− are only slightly concentrated (×2–10). An anion deficit of ~120 mEq l−1 in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg−1 in R. coronifer to 961±43 mOsm kg−1 in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis

    AB - Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na+ and Cl− are the principal inorganic ions in tardigrade fluids, albeit other ions, i.e. K+, NH4+, Ca2+, Mg2+, F−, SO42− and PO43− were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared with that of the external medium (Na+, ×70–800; K+, ×20–90; Ca2+ and Mg2+, ×30–200; F−, ×160–1040, Cl−, ×20–50; PO43−, ×700–2800; SO42−, ×30–150). In contrast, in the marine species H. crispae, Na+, Cl− and SO42− are almost in ionic equilibrium with (brackish) salt water, while K+, Ca2+, Mg2+ and F− are only slightly concentrated (×2–10). An anion deficit of ~120 mEq l−1 in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg−1 in R. coronifer to 961±43 mOsm kg−1 in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis

    KW - ion

    KW - tardigrade

    KW - cryptobiosis

    KW - anhydrobiosis

    KW - marine

    U2 - 10.1242/jeb.075531

    DO - 10.1242/jeb.075531

    M3 - Journal article

    VL - 216

    SP - 1235

    EP - 1243

    JO - Journal of Experimental Biology

    JF - Journal of Experimental Biology

    SN - 0022-0949

    ER -