Identification of a prospective early motor progression cluster of Parkinson's disease: Data from the PPMI study

George D Vavougios*, Triantafyllos Doskas, Constantinos Kormas, Karen A Krogfelt, Sotirios G Zarogiannis, Leonidas Stefanis

*Corresponding author

Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

Abstract

AimThe aim of our study is to phenotype PD motor progression, and to detect whether serum, cerebrospinal fluid (CSF), neuroimaging biomarkers and neuropsychological measures characterize PD motor progression phenotypes.MethodsWe defined motor progression as a difference of at least one point in the Hoehn & Yahr (H&Y) scale between the baseline (Visit 0, V0), 12 months (Visit 04, V04) and 36 months (Visit 08, V08) milestones of the Progression Markers Initiative (PPMI) study. H&Y progression events were recorded at each milestone in order to be used as cluster analysis variables, in order to produce progression phenotypes. Subsequently, cross-cluster comparisons prior to and following (pairwise) propensity score matching were performed in order to assess phenotype – defining characteristics.ResultsFour progression clusters where identified: SPPD: Secondarily Progressive PD, H&Y progression between V04 and V08; EPPD: Early Progressive PD. H&Y progression between V0 and V04; NPPD: Non Progressive PD, no H&Y progression; MIPD: Minimally Improving PD, i.e. Minimal H&Y improvement H&Y progression between V04 and V08;. Independent Samples Mann Whitney U tests determined CSF aSyn (p = 0.006, adj p-value = 0.036. I) and Semantic Animal fluency T-score (SFT, p = 0.003, adjusted p-value = 0.016.) as statistically significant cross-cluster characteristics. Following Propensity Score Matching, SFT, Hopkins Verbal Learning Test (Retention/Recall), Serum IGF1, CSF aSyn, DaT-SPECT binding ratios (SBRs) and the Benton Judgement of Line Orientation Test (BJLOT) were determined as statistically significant predictors of cluster differentiation (p < 0.05).DiscussionSFT, Serum IGF1, CSF aSyn and DaT-SPECT-derived, basal ganglia Striatal Binding Ratios warrant further investigation as possible motor progression biomarkers.
OriginalsprogEngelsk
TidsskriftJournal of the Neurological Sciences
Vol/bind387
Sider (fra-til)103-108
Antal sider6
ISSN0022-510X
DOI
StatusUdgivet - 2018
Udgivet eksterntJa

Citer dette