Growing correlation length on cooling below the onset of caging in a simulated glass-forming liquid

N. Lačević, F. W. Starr, Thomas Schrøder, V. N. Novikov, S. C. Glotzer

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


    We present a calculation of a fourth-order, time-dependent density correlation function that measures higher-order spatiotemporal correlations of the density of a liquid. From molecular dynamics simulations of a glass-forming Lennard-Jones liquid, we find that the characteristic length scale of this function has a maximum as a function of time which increases steadily beyond the characteristic length of the static pair correlation function g(r) in the temperature range approaching the mode coupling temperature from above. This length scale provides a measure of the spatially heterogeneous nature of the dynamics of the liquid in the alpha-relaxation regime.
    TidsskriftPhysical Review E (Statistical, Nonlinear, and Soft Matter Physics)
    Udgave nummer3
    Antal sider4
    StatusUdgivet - 2002

    Bibliografisk note

    Paper id:: 030101

    Citer dette