Abstract
Bacterial intercellular signaling mediated by small molecules, also called autoinducers (AIs), enables synchronized behavior in response to environmental conditions, and in many bacterial pathogens, intercellular signaling controls virulence gene expression. However, in the intestinal pathogen Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium), although three signals, named AI-1, AI-2 and AI-3, have been described, their roles in virulence remain elusive. AI-3 is the 3,6- isomer of a previously described Vibrio cholerae signaling molecule; 3,5-dimethylpyrazin-2-ol (3,5-DPO). To elucidate the role of AI-3/DPO in S. Typhimurium, we have mapped the global transcriptomic responses to 3,5- and 3,6-DPO isomers in S. Typhimurium. Our studies showed that DPO affects expression of almost 8% of all genes. Specifically, expression of several genes involved in gut-colonization respond to DPO. Interestingly, most of the affected genes are similarly regulated by 3,5-DPO and 3,6-DPO, respectively, indicating that the two isomers have overlapping roles in S. Typhimurium.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 117 |
Tidsskrift | Archives of microbiology |
Vol/bind | 205 |
Udgave nummer | 4 |
Antal sider | 7 |
ISSN | 0302-8933 |
DOI | |
Status | Udgivet - apr. 2023 |
Bibliografisk note
The datasets generated during and/or analyzed dur-ing the current study are available in Sequence Read Archive under
Bioproject accession number PRJNA923488