General spectral flow formula for fixed maximal domain

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

    Abstract

    We consider a continuous curve of linear elliptic formally self-adjoint differential operators of first order with smooth coefficients over a compact Riemannian manifold with boundary together with a continuous curve of global elliptic boundary value problems. We express the spectral flow of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by the Cauchy data spaces. We provide rigorous definitions of the underlying concepts of spectral theory and symplectic analysis and give a full (and surprisingly short) proof of our General Spectral Flow Formula for the case of fixed maximal domain. As a side result, we establish local stability of weak inner unique continuation property (UCP) and explain its role for parameter dependent spectral theory.
    OriginalsprogEngelsk
    TidsskriftCentral European Journal of Mathematics
    Vol/bind3
    Udgave nummer3
    Sider (fra-til)558-577
    Antal sider20
    ISSN1895-1074
    StatusUdgivet - 2005

    Emneord

    • Spectral flow
    • Maslov index
    • Elliptic boundary value problems

    Citer dette