Decomposition of Formic Acid Catalyzed by a Phosphine-Free Ruthenium Complex in a Task-Specific Ionic Liquid

J. D. Scholten, M. H. G. Prechtl, J. Dupont

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Resumé

The dehydrogenation of formic acid is effectively catalyzed by the Ru complex [{RuCl(2)(p-cymene)}(2)] dissolved in the ionic liquid (IL) 1-(2-(diethylamino)ethyl)-3-methylimidazolium chloride at 80 degrees C without additional bases. This catalytic system gives TOF values of up to 1540 h(-1). Preliminary kinetic insights show formal reaction orders of 0.70(+/-0.15), 0.78(+/-0.03) and 2.00(+/-0.17) for the Ru catalyst, IL 1, and formic acid, respectively. The apparent activation energy of this process is estimated to be (69.1+/-7.6) kJ mol(-1). In addition, dimeric Ru hydride ionic species involved in the reaction, such as [{Ru(p-cymene)}(2){(H)mu-(H)-mu-(HCO(2))}](+) and [{Ru(p-cymene)}(2){(H)mu-(Cl)mu- (HCO(2)))](+), are identified by mass spectrometry. The presence of water in large amounts inhibits higher conversions. Finally, a remarkable catalytic activity is observed during recycles, inclicating this system's potential for hydrogen gas production.
OriginalsprogEngelsk
TidsskriftChemCatChem
Vol/bind2
Udgave nummer10
Sider (fra-til)1265-1270
Antal sider6
ISSN1867-3880
DOI
StatusUdgivet - 2010
Udgivet eksterntJa

Emneord

    Citer dette

    @article{43b1996607bb4efeb622f88406a47f2e,
    title = "Decomposition of Formic Acid Catalyzed by a Phosphine-Free Ruthenium Complex in a Task-Specific Ionic Liquid",
    abstract = "The dehydrogenation of formic acid is effectively catalyzed by the Ru complex [{RuCl(2)(p-cymene)}(2)] dissolved in the ionic liquid (IL) 1-(2-(diethylamino)ethyl)-3-methylimidazolium chloride at 80 degrees C without additional bases. This catalytic system gives TOF values of up to 1540 h(-1). Preliminary kinetic insights show formal reaction orders of 0.70(+/-0.15), 0.78(+/-0.03) and 2.00(+/-0.17) for the Ru catalyst, IL 1, and formic acid, respectively. The apparent activation energy of this process is estimated to be (69.1+/-7.6) kJ mol(-1). In addition, dimeric Ru hydride ionic species involved in the reaction, such as [{Ru(p-cymene)}(2){(H)mu-(H)-mu-(HCO(2))}](+) and [{Ru(p-cymene)}(2){(H)mu-(Cl)mu- (HCO(2)))](+), are identified by mass spectrometry. The presence of water in large amounts inhibits higher conversions. Finally, a remarkable catalytic activity is observed during recycles, inclicating this system's potential for hydrogen gas production.",
    keywords = "hydrogen-storage carbon nanotubes generation dehydrogenation pressure alkenes design water h-2 Chemistry",
    author = "Scholten, {J. D.} and Prechtl, {M. H. G.} and J. Dupont",
    note = "ISI Document Delivery No.: 672ZM Times Cited: 8 Cited Reference Count: 44 Cited References: Boddien A, 2008, CHEMSUSCHEM, V1, P751, DOI 10.1002/cssc.200800093 Chen P, 1999, SCIENCE, V285, P91, DOI 10.1126/science.285.5424.91 Daguenet C, 2004, ORGANOMETALLICS, V23, P6080, DOI 10.1021/om049347r Daguenet C, 2004, ORGANOMETALLICS, V23, P4849, DOI 10.1021/om049665q Davis JH, 2004, CHEM LETT, V33, P1072 Dullius JEL, 1998, ORGANOMETALLICS, V17, P815, DOI 10.1021/om970982p EBERLIN MN, 2007, MASS SPECTROM, V13, P19 Enthaler S, 2008, CHEMSUSCHEM, V1, P801, DOI 10.1002/cssc.200800101 Fei ZF, 2006, CHEM-EUR J, V12, P2123, DOI 10.1002/chem.200500581 Fellay C, 2009, CHEM-EUR J, V15, P3752, DOI 10.1002/chem.200801824 Fellay C., 2008, ANGEW CHEM, V120, P4030, DOI 10.1002/ange.200800320 FELLAY C, 2008, INT, V47, P3966 Fukuzumi S, 2008, CHEMSUSCHEM, V1, P827, DOI 10.1002/cssc.200800147 Fukuzumi S, 2010, J AM CHEM SOC, V132, P1496, DOI 10.1021/ja910349w Gozzo FC, 2004, CHEM-EUR J, V10, P6187, DOI 10.1002/chem.200305742 Jimenez MV, 2008, ORGANOMETALLICS, V27, P224, DOI 10.1021/om700728a Joo F, 2008, CHEMSUSCHEM, V1, P805, DOI 10.1002/cssc.200800133 Junge H, 2009, TETRAHEDRON LETT, V50, P1603, DOI 10.1016/j.tetlet.2009.01.101 Khairallah GN, 2006, INT J MASS SPECTROM, V254, P145, DOI 10.1016/j.ijms.2006.04.011 Lapis AAM, 2006, TETRAHEDRON LETT, V47, P6775, DOI 10.1016/j.tetlet.2006.07.073 Larsson R, 1998, J MOL CATAL A-CHEM, V129, P41, DOI 10.1016/S1381-1169(97)00126-X Lee H, 2005, NATURE, V434, P743, DOI 10.1038/nature03457 Li XL, 2010, CHEMSUSCHEM, V3, P71, DOI 10.1002/cssc.200900218 Liu C, 1999, SCIENCE, V286, P1127, DOI 10.1126/science.286.5442.1127 Loges B., 2008, ANGEW CHEM, V120, P4026, DOI 10.1002/ange.200705972 LOGES B, 2008, INT, V47, P3962 Loges B, 2009, CHEM COMMUN, P4185, DOI 10.1039/b908121f Makowski P, 2009, ENERG ENVIRON SCI, V2, P480, DOI 10.1039/b822279g MARS P, 1963, ADV CATAL, V14, P35, DOI 10.1016/S0360-0564(08)60338-7 Meng S, 2007, NANO LETT, V7, P663, DOI 10.1021/nl062692g Morris DJ, 2009, ORGANOMETALLICS, V28, P4133, DOI 10.1021/om900099u Mpourmpakis G, 2006, NANO LETT, V6, P1581, DOI 10.1021/nl0603911 Ojeda M., 2009, ANGEW CHEM, V121, P4894 OJEDA M, 2009, INT, V48, P4800 Ozolins V, 2009, J AM CHEM SOC, V131, P230, DOI 10.1021/ja8066429 Prechtl MHG, 2009, J MOL CATAL A-CHEM, V313, P74, DOI 10.1016/j.molcata.2009.08.004 Rubin J, 1998, CULTURES POLITICS PO, P141 Santos L. S., 2004, ANGEW CHEM, V116, P4430, DOI 10.1002/ange.200460059 SANTOS LS, 2004, INT, V43, P4330 Schlapbach L, 2001, NATURE, V414, P353, DOI 10.1038/35104634 Scholten JD, 2008, ORGANOMETALLICS, V27, P4439, DOI 10.1021/om8003948 Wang YG, 2004, ENERG FUEL, V18, P1429, DOI 10.1021/ef049959o YANG J, 2008, INT, V47, P882 YANG J, 2008, ANGEW CHEM, V120, P896, DOI 10.1002/ange.200703756 Scholten, Jackson D. Prechtl, Martin H. G. Dupont, Jairton Dupont, Jairton/F-7161-2010; Prechtl, Martin/A-7416-2008 Prechtl, Martin/0000-0003-2155-8006 CNPq; CAPES; Petrobras; Alexander-von-Humboldt Foundation The authors would like to thank the CNPq, CAPES, Petrobras and the Alexander-von-Humboldt Foundation (MHG Prechtl) for funding. 8 Wiley-v c h verlag gmbh Weinheim",
    year = "2010",
    doi = "10.1002/cctc.201000119",
    language = "English",
    volume = "2",
    pages = "1265--1270",
    journal = "ChemCatChem",
    issn = "1867-3880",
    number = "10",

    }

    Decomposition of Formic Acid Catalyzed by a Phosphine-Free Ruthenium Complex in a Task-Specific Ionic Liquid. / Scholten, J. D.; Prechtl, M. H. G.; Dupont, J.

    I: ChemCatChem, Bind 2, Nr. 10, 2010, s. 1265-1270.

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

    TY - JOUR

    T1 - Decomposition of Formic Acid Catalyzed by a Phosphine-Free Ruthenium Complex in a Task-Specific Ionic Liquid

    AU - Scholten, J. D.

    AU - Prechtl, M. H. G.

    AU - Dupont, J.

    N1 - ISI Document Delivery No.: 672ZM Times Cited: 8 Cited Reference Count: 44 Cited References: Boddien A, 2008, CHEMSUSCHEM, V1, P751, DOI 10.1002/cssc.200800093 Chen P, 1999, SCIENCE, V285, P91, DOI 10.1126/science.285.5424.91 Daguenet C, 2004, ORGANOMETALLICS, V23, P6080, DOI 10.1021/om049347r Daguenet C, 2004, ORGANOMETALLICS, V23, P4849, DOI 10.1021/om049665q Davis JH, 2004, CHEM LETT, V33, P1072 Dullius JEL, 1998, ORGANOMETALLICS, V17, P815, DOI 10.1021/om970982p EBERLIN MN, 2007, MASS SPECTROM, V13, P19 Enthaler S, 2008, CHEMSUSCHEM, V1, P801, DOI 10.1002/cssc.200800101 Fei ZF, 2006, CHEM-EUR J, V12, P2123, DOI 10.1002/chem.200500581 Fellay C, 2009, CHEM-EUR J, V15, P3752, DOI 10.1002/chem.200801824 Fellay C., 2008, ANGEW CHEM, V120, P4030, DOI 10.1002/ange.200800320 FELLAY C, 2008, INT, V47, P3966 Fukuzumi S, 2008, CHEMSUSCHEM, V1, P827, DOI 10.1002/cssc.200800147 Fukuzumi S, 2010, J AM CHEM SOC, V132, P1496, DOI 10.1021/ja910349w Gozzo FC, 2004, CHEM-EUR J, V10, P6187, DOI 10.1002/chem.200305742 Jimenez MV, 2008, ORGANOMETALLICS, V27, P224, DOI 10.1021/om700728a Joo F, 2008, CHEMSUSCHEM, V1, P805, DOI 10.1002/cssc.200800133 Junge H, 2009, TETRAHEDRON LETT, V50, P1603, DOI 10.1016/j.tetlet.2009.01.101 Khairallah GN, 2006, INT J MASS SPECTROM, V254, P145, DOI 10.1016/j.ijms.2006.04.011 Lapis AAM, 2006, TETRAHEDRON LETT, V47, P6775, DOI 10.1016/j.tetlet.2006.07.073 Larsson R, 1998, J MOL CATAL A-CHEM, V129, P41, DOI 10.1016/S1381-1169(97)00126-X Lee H, 2005, NATURE, V434, P743, DOI 10.1038/nature03457 Li XL, 2010, CHEMSUSCHEM, V3, P71, DOI 10.1002/cssc.200900218 Liu C, 1999, SCIENCE, V286, P1127, DOI 10.1126/science.286.5442.1127 Loges B., 2008, ANGEW CHEM, V120, P4026, DOI 10.1002/ange.200705972 LOGES B, 2008, INT, V47, P3962 Loges B, 2009, CHEM COMMUN, P4185, DOI 10.1039/b908121f Makowski P, 2009, ENERG ENVIRON SCI, V2, P480, DOI 10.1039/b822279g MARS P, 1963, ADV CATAL, V14, P35, DOI 10.1016/S0360-0564(08)60338-7 Meng S, 2007, NANO LETT, V7, P663, DOI 10.1021/nl062692g Morris DJ, 2009, ORGANOMETALLICS, V28, P4133, DOI 10.1021/om900099u Mpourmpakis G, 2006, NANO LETT, V6, P1581, DOI 10.1021/nl0603911 Ojeda M., 2009, ANGEW CHEM, V121, P4894 OJEDA M, 2009, INT, V48, P4800 Ozolins V, 2009, J AM CHEM SOC, V131, P230, DOI 10.1021/ja8066429 Prechtl MHG, 2009, J MOL CATAL A-CHEM, V313, P74, DOI 10.1016/j.molcata.2009.08.004 Rubin J, 1998, CULTURES POLITICS PO, P141 Santos L. S., 2004, ANGEW CHEM, V116, P4430, DOI 10.1002/ange.200460059 SANTOS LS, 2004, INT, V43, P4330 Schlapbach L, 2001, NATURE, V414, P353, DOI 10.1038/35104634 Scholten JD, 2008, ORGANOMETALLICS, V27, P4439, DOI 10.1021/om8003948 Wang YG, 2004, ENERG FUEL, V18, P1429, DOI 10.1021/ef049959o YANG J, 2008, INT, V47, P882 YANG J, 2008, ANGEW CHEM, V120, P896, DOI 10.1002/ange.200703756 Scholten, Jackson D. Prechtl, Martin H. G. Dupont, Jairton Dupont, Jairton/F-7161-2010; Prechtl, Martin/A-7416-2008 Prechtl, Martin/0000-0003-2155-8006 CNPq; CAPES; Petrobras; Alexander-von-Humboldt Foundation The authors would like to thank the CNPq, CAPES, Petrobras and the Alexander-von-Humboldt Foundation (MHG Prechtl) for funding. 8 Wiley-v c h verlag gmbh Weinheim

    PY - 2010

    Y1 - 2010

    N2 - The dehydrogenation of formic acid is effectively catalyzed by the Ru complex [{RuCl(2)(p-cymene)}(2)] dissolved in the ionic liquid (IL) 1-(2-(diethylamino)ethyl)-3-methylimidazolium chloride at 80 degrees C without additional bases. This catalytic system gives TOF values of up to 1540 h(-1). Preliminary kinetic insights show formal reaction orders of 0.70(+/-0.15), 0.78(+/-0.03) and 2.00(+/-0.17) for the Ru catalyst, IL 1, and formic acid, respectively. The apparent activation energy of this process is estimated to be (69.1+/-7.6) kJ mol(-1). In addition, dimeric Ru hydride ionic species involved in the reaction, such as [{Ru(p-cymene)}(2){(H)mu-(H)-mu-(HCO(2))}](+) and [{Ru(p-cymene)}(2){(H)mu-(Cl)mu- (HCO(2)))](+), are identified by mass spectrometry. The presence of water in large amounts inhibits higher conversions. Finally, a remarkable catalytic activity is observed during recycles, inclicating this system's potential for hydrogen gas production.

    AB - The dehydrogenation of formic acid is effectively catalyzed by the Ru complex [{RuCl(2)(p-cymene)}(2)] dissolved in the ionic liquid (IL) 1-(2-(diethylamino)ethyl)-3-methylimidazolium chloride at 80 degrees C without additional bases. This catalytic system gives TOF values of up to 1540 h(-1). Preliminary kinetic insights show formal reaction orders of 0.70(+/-0.15), 0.78(+/-0.03) and 2.00(+/-0.17) for the Ru catalyst, IL 1, and formic acid, respectively. The apparent activation energy of this process is estimated to be (69.1+/-7.6) kJ mol(-1). In addition, dimeric Ru hydride ionic species involved in the reaction, such as [{Ru(p-cymene)}(2){(H)mu-(H)-mu-(HCO(2))}](+) and [{Ru(p-cymene)}(2){(H)mu-(Cl)mu- (HCO(2)))](+), are identified by mass spectrometry. The presence of water in large amounts inhibits higher conversions. Finally, a remarkable catalytic activity is observed during recycles, inclicating this system's potential for hydrogen gas production.

    KW - hydrogen-storage carbon nanotubes generation dehydrogenation pressure alkenes design water h-2 Chemistry

    U2 - 10.1002/cctc.201000119

    DO - 10.1002/cctc.201000119

    M3 - Journal article

    VL - 2

    SP - 1265

    EP - 1270

    JO - ChemCatChem

    JF - ChemCatChem

    SN - 1867-3880

    IS - 10

    ER -