CO2-based hydrogen storage - Hydrogen generation from formaldehyde/water

Physical Sciences Reviews

Monica Trincado, Hansjörg Grutzmacher, Martin H. G. Prechtl

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Resumé

Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies' energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.
OriginalsprogEngelsk
TidsskriftPhys. Sci. Rev.
Vol/bind3
Udgave nummer5
ISSN2365-6581
DOI
StatusUdgivet - 2018
Udgivet eksterntJa

Citer dette

@article{3793a6d8de0c42d488cd42a416665974,
title = "CO2-based hydrogen storage - Hydrogen generation from formaldehyde/water: Physical Sciences Reviews",
abstract = "Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies' energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.",
keywords = "formaldehyde methanol carbon dioxide reforming hydrogen storage hydrogen generation carbon-dioxide room-temperature mild conditions methanol dehydrogenation photocatalytic reduction aqueous formaldehyde catalytic-system pincer catalyst formic-acid co2 Science & Technology - Other Topics",
author = "Monica Trincado and Hansj{\"o}rg Grutzmacher and Prechtl, {Martin H. G.}",
note = "ISI Document Delivery No.: GT7UI Times Cited: 0 Cited Reference Count: 80 Cited References: Alberico E, 2013, ANGEW CHEM INT EDIT, V52, P14162, DOI 10.1002/anie.201307224 Anderez-Fernandez M, 2017, ANGEW CHEM INT EDIT, V56, P559, DOI 10.1002/anie.201610182 Aresta M, 2007, DALTON T, P2975, DOI 10.1039/b700658f ASHBY EC, 1993, J AM CHEM SOC, V115, P1171, DOI 10.1021/ja00056a065 AURIANBLAJENI B, 1980, SOL ENERGY, V25, P165, DOI 10.1016/0038-092X(80)90472-7 Bahmanpour AM, 2015, GREEN CHEM, V17, P3500, DOI 10.1039/c5gc00599j Beck CM, 1999, ORGANOMETALLICS, V18, P5311, DOI 10.1021/om9905106 Bi YP, 2008, INT J HYDROGEN ENERG, V33, P2225, DOI 10.1016/j.ijhydene.2008.02.064 Bi YP, 2010, INT J HYDROGEN ENERG, V35, P7177, DOI 10.1016/j.ijhydene.2009.12.142 Bielinski EA, 2015, ACS CATAL, V5, P2404, DOI 10.1021/acscatal.5b00137 Blakley RL, 1969, BIOCH FOLIC ACID REL Blum J., 1893, ZOOL ANZ, V16, P450 Bone WA, 1905, J CHEM SOC, V87, P910, DOI 10.1039/ct9058700910 Bontemps S, 2014, J AM CHEM SOC, V136, P4419, DOI 10.1021/ja500708w Bontemps S, 2012, ANGEW CHEM INT EDIT, V51, P1671, DOI 10.1002/anie.201107352 Brenk M., 2010, Silver catalyst for formaldehyde preparation, Patent No. [PCT/EP2009/006170, 2009006170] Cannizzaro S., 1853, LIEBIGS ANN CHEM, V88, P129 Chan FL, 2018, CATAL TODAY, V309, P242, DOI 10.1016/j.cattod.2017.06.012 Connor R, 1931, J AM CHEM SOC, V53, P2012, DOI 10.1021/ja01356a511 COOK J, 1980, J CHEM SOC CHEM COMM, P144, DOI 10.1039/c39800000144 Crespy D, 2008, ANGEW CHEM INT EDIT, V47, P3322, DOI 10.1002/anie.200704281 Fornari AMD, 2016, INT J HYDROGEN ENERG, V41, P11599, DOI 10.1016/j.ijhydene.2016.02.055 Dorokhov YL, 2015, PHYSIOL REV, V95, P603, DOI 10.1152/physrev.00034.2014 FACHINETTI G, 1978, J CHEM SOC CHEM COMM, P269, DOI 10.1039/c39780000269 Fujita K, 2015, ANGEW CHEM INT EDIT, V54, P9057, DOI 10.1002/anie.201502194 GAMBAROTTA S, 1985, J AM CHEM SOC, V107, P6278, DOI 10.1021/ja00308a019 Gao H, 2015, APPL CATAL B-ENVIRON, V172, P1, DOI 10.1016/j.apcatb.2015.02.004 Gao ST, 2016, RSC ADV, V6, P105638, DOI 10.1039/c6ra22761a Heim LE, 2017, GREEN CHEM, V19, P2347, DOI 10.1039/c6gc03093a Heim LE, 2016, GREEN CHEM, V18, P1469, DOI [10.1039/C5GC01798J, 10.1039/c5gc01798j] Heim LE, 2015, ANGEW CHEM INT EDIT, V54, P10308, DOI [10.1002/anie.201503737, 10.1002/ange.201503737] Heim LE, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4621 Hu HY, 2014, NANO ENERGY, V8, P103, DOI 10.1016/j.nanoen.2014.05.015 Hu P, 2014, ACS CATAL, V4, P2649, DOI 10.1021/cs500937f Huang F, 2011, INORG CHEM, V50, P3816, DOI 10.1021/ic200221a INOUE T, 1979, NATURE, V277, P637, DOI 10.1038/277637a0 IPATIEFF VN, 1945, J AM CHEM SOC, V67, P2168, DOI 10.1021/ja01228a032 Jeroro E, 2008, J AM CHEM SOC, V130, P10199, DOI 10.1021/ja8001265 Jiang YF, 2013, J AM CHEM SOC, V135, P7751, DOI 10.1021/ja402381d Jin ZY, 2013, J MATER CHEM A, V1, P14736, DOI 10.1039/c3ta13277c Kapoor S, 2004, CHEM PHYS LETT, V387, P322, DOI 10.1016/j.cplett.2004.01.127 KAPOOR S, 1995, J PHYS CHEM-US, V99, P6857, DOI 10.1021/j100018a017 KHAN MMT, 1989, J MOL CATAL, V57, P47, DOI 10.1016/0304-5102(89)80126-9 Knijnenburg Q, 2006, DALTON T, P5442, DOI 10.1039/b612251e LeBlanc FA, 2014, ANGEW CHEM INT EDIT, V53, P789, DOI 10.1002/anie.201309094 Lee DK, 2001, APPL ORGANOMET CHEM, V15, P148, DOI 10.1002/1099-0739(200102)15:2<148::AID-AOC104>3.0.CO;2-N Li KF, 2014, CATAL TODAY, V224, P3, DOI 10.1016/j.cattod.2013.12.006 Li RH, 2017, ACS CATAL, V7, P1478, DOI 10.1021/acscatal.6b03370 Li SP, 2016, J MATER CHEM A, V4, P796, DOI 10.1039/c5ta08720a Li YW, 2014, INT J HYDROGEN ENERG, V39, P9114, DOI 10.1016/j.ijhydene.2014.03.257 Ling F, 2016, INT J HYDROGEN ENERG, V41, P6115, DOI 10.1016/j.ijhydene.2015.10.036 MACHIDA K, 1985, B CHEM SOC JPN, V58, P2043, DOI 10.1246/bcsj.58.2043 MATSUMOTO Y, 1994, J PHYS CHEM-US, V98, P2950, DOI 10.1021/j100062a035 Metsanen TT, 2015, ORGANOMETALLICS, V34, P543, DOI 10.1021/om501279a Monney A, 2014, CHEM COMMUN, V50, P707, DOI 10.1039/c3cc47306f Nakata K, 2014, ANGEW CHEM INT EDIT, V53, P871, DOI 10.1002/anie.201308657 Nielsen M, 2013, NATURE, V495, P85, DOI 10.1038/nature11891 Pan XW, 2015, INT J HYDROGEN ENERG, V40, P1752, DOI 10.1016/j.ijhydene.2014.11.130 Preti D, 2009, ANGEW CHEM INT EDIT, V48, P4763, DOI 10.1002/anie.200805860 Qin GH, 2013, APPL CATAL B-ENVIRON, V129, P599, DOI 10.1016/j.apcatb.2012.10.012 Rankin MA, 2010, J AM CHEM SOC, V132, P10021, DOI 10.1021/ja104761n Reuss G, 2003, ULLMANNS ENCY IND CH Reuss G, 2008, ULLMANS ENCY IND CHE, VA11, P619 Rios P, 2016, CHEM COMMUN, V52, P2114, DOI 10.1039/c5cc09650b Rodriguez-Lugo RE, 2013, NAT CHEM, V5, P342, DOI [10.1038/NCHEM.1595, 10.1038/nchem.1595] Schlorer NE, 2002, ANGEW CHEM INT EDIT, V41, P107, DOI 10.1002/1521-3773(20020104)41:1<107::AID-ANIE107>3.0.CO;2-N Schlorer NE, 2001, ORGANOMETALLICS, V20, P1703, DOI 10.1021/om000598j Shi JF, 2012, BIORESOURCE TECHNOL, V118, P359, DOI 10.1016/j.biortech.2012.04.099 SNYDER LE, 1969, PHYS REV LETT, V22, P679, DOI 10.1103/PhysRevLett.22.679 Sponholz P, 2014, CHEMSUSCHEM, V7, P2419, DOI 10.1002/cssc.201402426 Suenobu T, 2015, CHEM COMMUN, V51, P1670, DOI 10.1039/c4cc06581f TADENUMA H, 1966, HYDROCARB PROCESS, V45, P195 Tang XJ, 2009, ENVIRON INT, V35, P1210, DOI 10.1016/j.envint.2009.06.002 TENNAKONE K, 1989, J PHOTOCH PHOTOBIO A, V49, P369, DOI 10.1016/1010-6030(89)87134-5 Trincado M, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14990 TUAZON EC, 1981, ENVIRON SCI TECHNOL, V15, P1232, DOI 10.1021/es00092a014 van der Waals D, 2016, CHEMSUSCHEM, V9, P2343, DOI 10.1002/cssc.201600824 van der Waals D, 2016, CHEM-EUR J, V22, P11568, DOI 10.1002/chem.201602679 vom Stein T, 2014, J AM CHEM SOC, V136, P13217, DOI 10.1021/ja506023f Zou SH, 2017, J PHYS CHEM C, V121, P4343, DOI 10.1021/acs.jpcc.6b12346 Trincado, Monica Grutzmacher, Hansjorg Prechtl, Martin H. G. Schweizer Nationalfonds (SNF); Eidgenossische Hochschule Zurich; Ministerium fur Innovation, Wissenschaft und Forschung (NRW); Heisenberg-Program (Deutsche Forschungsgemeinschaft); Alexander-von-Humboldt Foundation; DAAD; COST Action CARISMA; COST Action CHAOS This work was supported by the Schweizer Nationalfonds (SNF), Eidgenossische Hochschule Zurich, the Ministerium fur Innovation, Wissenschaft und Forschung (NRW-returnee award 2009 to M. H. G. P.) and the Heisenberg-Program (Deutsche Forschungsgemeinschaft). Additionally, M. H. G. P. gratefully acknowledges financial support provided by the Alexander-von-Humboldt Foundation, DAAD and the COST Actions CARISMA and CHAOS. 0 Walter de gruyter gmbh Berlin 2365-659x",
year = "2018",
doi = "10.1515/psr-2017-0013",
language = "English",
volume = "3",
journal = "Phys. Sci. Rev.",
issn = "2365-6581",
number = "5",

}

CO2-based hydrogen storage - Hydrogen generation from formaldehyde/water : Physical Sciences Reviews. / Trincado, Monica; Grutzmacher, Hansjörg; Prechtl, Martin H. G.

I: Phys. Sci. Rev., Bind 3, Nr. 5, 2018.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

TY - JOUR

T1 - CO2-based hydrogen storage - Hydrogen generation from formaldehyde/water

T2 - Physical Sciences Reviews

AU - Trincado, Monica

AU - Grutzmacher, Hansjörg

AU - Prechtl, Martin H. G.

N1 - ISI Document Delivery No.: GT7UI Times Cited: 0 Cited Reference Count: 80 Cited References: Alberico E, 2013, ANGEW CHEM INT EDIT, V52, P14162, DOI 10.1002/anie.201307224 Anderez-Fernandez M, 2017, ANGEW CHEM INT EDIT, V56, P559, DOI 10.1002/anie.201610182 Aresta M, 2007, DALTON T, P2975, DOI 10.1039/b700658f ASHBY EC, 1993, J AM CHEM SOC, V115, P1171, DOI 10.1021/ja00056a065 AURIANBLAJENI B, 1980, SOL ENERGY, V25, P165, DOI 10.1016/0038-092X(80)90472-7 Bahmanpour AM, 2015, GREEN CHEM, V17, P3500, DOI 10.1039/c5gc00599j Beck CM, 1999, ORGANOMETALLICS, V18, P5311, DOI 10.1021/om9905106 Bi YP, 2008, INT J HYDROGEN ENERG, V33, P2225, DOI 10.1016/j.ijhydene.2008.02.064 Bi YP, 2010, INT J HYDROGEN ENERG, V35, P7177, DOI 10.1016/j.ijhydene.2009.12.142 Bielinski EA, 2015, ACS CATAL, V5, P2404, DOI 10.1021/acscatal.5b00137 Blakley RL, 1969, BIOCH FOLIC ACID REL Blum J., 1893, ZOOL ANZ, V16, P450 Bone WA, 1905, J CHEM SOC, V87, P910, DOI 10.1039/ct9058700910 Bontemps S, 2014, J AM CHEM SOC, V136, P4419, DOI 10.1021/ja500708w Bontemps S, 2012, ANGEW CHEM INT EDIT, V51, P1671, DOI 10.1002/anie.201107352 Brenk M., 2010, Silver catalyst for formaldehyde preparation, Patent No. [PCT/EP2009/006170, 2009006170] Cannizzaro S., 1853, LIEBIGS ANN CHEM, V88, P129 Chan FL, 2018, CATAL TODAY, V309, P242, DOI 10.1016/j.cattod.2017.06.012 Connor R, 1931, J AM CHEM SOC, V53, P2012, DOI 10.1021/ja01356a511 COOK J, 1980, J CHEM SOC CHEM COMM, P144, DOI 10.1039/c39800000144 Crespy D, 2008, ANGEW CHEM INT EDIT, V47, P3322, DOI 10.1002/anie.200704281 Fornari AMD, 2016, INT J HYDROGEN ENERG, V41, P11599, DOI 10.1016/j.ijhydene.2016.02.055 Dorokhov YL, 2015, PHYSIOL REV, V95, P603, DOI 10.1152/physrev.00034.2014 FACHINETTI G, 1978, J CHEM SOC CHEM COMM, P269, DOI 10.1039/c39780000269 Fujita K, 2015, ANGEW CHEM INT EDIT, V54, P9057, DOI 10.1002/anie.201502194 GAMBAROTTA S, 1985, J AM CHEM SOC, V107, P6278, DOI 10.1021/ja00308a019 Gao H, 2015, APPL CATAL B-ENVIRON, V172, P1, DOI 10.1016/j.apcatb.2015.02.004 Gao ST, 2016, RSC ADV, V6, P105638, DOI 10.1039/c6ra22761a Heim LE, 2017, GREEN CHEM, V19, P2347, DOI 10.1039/c6gc03093a Heim LE, 2016, GREEN CHEM, V18, P1469, DOI [10.1039/C5GC01798J, 10.1039/c5gc01798j] Heim LE, 2015, ANGEW CHEM INT EDIT, V54, P10308, DOI [10.1002/anie.201503737, 10.1002/ange.201503737] Heim LE, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4621 Hu HY, 2014, NANO ENERGY, V8, P103, DOI 10.1016/j.nanoen.2014.05.015 Hu P, 2014, ACS CATAL, V4, P2649, DOI 10.1021/cs500937f Huang F, 2011, INORG CHEM, V50, P3816, DOI 10.1021/ic200221a INOUE T, 1979, NATURE, V277, P637, DOI 10.1038/277637a0 IPATIEFF VN, 1945, J AM CHEM SOC, V67, P2168, DOI 10.1021/ja01228a032 Jeroro E, 2008, J AM CHEM SOC, V130, P10199, DOI 10.1021/ja8001265 Jiang YF, 2013, J AM CHEM SOC, V135, P7751, DOI 10.1021/ja402381d Jin ZY, 2013, J MATER CHEM A, V1, P14736, DOI 10.1039/c3ta13277c Kapoor S, 2004, CHEM PHYS LETT, V387, P322, DOI 10.1016/j.cplett.2004.01.127 KAPOOR S, 1995, J PHYS CHEM-US, V99, P6857, DOI 10.1021/j100018a017 KHAN MMT, 1989, J MOL CATAL, V57, P47, DOI 10.1016/0304-5102(89)80126-9 Knijnenburg Q, 2006, DALTON T, P5442, DOI 10.1039/b612251e LeBlanc FA, 2014, ANGEW CHEM INT EDIT, V53, P789, DOI 10.1002/anie.201309094 Lee DK, 2001, APPL ORGANOMET CHEM, V15, P148, DOI 10.1002/1099-0739(200102)15:2<148::AID-AOC104>3.0.CO;2-N Li KF, 2014, CATAL TODAY, V224, P3, DOI 10.1016/j.cattod.2013.12.006 Li RH, 2017, ACS CATAL, V7, P1478, DOI 10.1021/acscatal.6b03370 Li SP, 2016, J MATER CHEM A, V4, P796, DOI 10.1039/c5ta08720a Li YW, 2014, INT J HYDROGEN ENERG, V39, P9114, DOI 10.1016/j.ijhydene.2014.03.257 Ling F, 2016, INT J HYDROGEN ENERG, V41, P6115, DOI 10.1016/j.ijhydene.2015.10.036 MACHIDA K, 1985, B CHEM SOC JPN, V58, P2043, DOI 10.1246/bcsj.58.2043 MATSUMOTO Y, 1994, J PHYS CHEM-US, V98, P2950, DOI 10.1021/j100062a035 Metsanen TT, 2015, ORGANOMETALLICS, V34, P543, DOI 10.1021/om501279a Monney A, 2014, CHEM COMMUN, V50, P707, DOI 10.1039/c3cc47306f Nakata K, 2014, ANGEW CHEM INT EDIT, V53, P871, DOI 10.1002/anie.201308657 Nielsen M, 2013, NATURE, V495, P85, DOI 10.1038/nature11891 Pan XW, 2015, INT J HYDROGEN ENERG, V40, P1752, DOI 10.1016/j.ijhydene.2014.11.130 Preti D, 2009, ANGEW CHEM INT EDIT, V48, P4763, DOI 10.1002/anie.200805860 Qin GH, 2013, APPL CATAL B-ENVIRON, V129, P599, DOI 10.1016/j.apcatb.2012.10.012 Rankin MA, 2010, J AM CHEM SOC, V132, P10021, DOI 10.1021/ja104761n Reuss G, 2003, ULLMANNS ENCY IND CH Reuss G, 2008, ULLMANS ENCY IND CHE, VA11, P619 Rios P, 2016, CHEM COMMUN, V52, P2114, DOI 10.1039/c5cc09650b Rodriguez-Lugo RE, 2013, NAT CHEM, V5, P342, DOI [10.1038/NCHEM.1595, 10.1038/nchem.1595] Schlorer NE, 2002, ANGEW CHEM INT EDIT, V41, P107, DOI 10.1002/1521-3773(20020104)41:1<107::AID-ANIE107>3.0.CO;2-N Schlorer NE, 2001, ORGANOMETALLICS, V20, P1703, DOI 10.1021/om000598j Shi JF, 2012, BIORESOURCE TECHNOL, V118, P359, DOI 10.1016/j.biortech.2012.04.099 SNYDER LE, 1969, PHYS REV LETT, V22, P679, DOI 10.1103/PhysRevLett.22.679 Sponholz P, 2014, CHEMSUSCHEM, V7, P2419, DOI 10.1002/cssc.201402426 Suenobu T, 2015, CHEM COMMUN, V51, P1670, DOI 10.1039/c4cc06581f TADENUMA H, 1966, HYDROCARB PROCESS, V45, P195 Tang XJ, 2009, ENVIRON INT, V35, P1210, DOI 10.1016/j.envint.2009.06.002 TENNAKONE K, 1989, J PHOTOCH PHOTOBIO A, V49, P369, DOI 10.1016/1010-6030(89)87134-5 Trincado M, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14990 TUAZON EC, 1981, ENVIRON SCI TECHNOL, V15, P1232, DOI 10.1021/es00092a014 van der Waals D, 2016, CHEMSUSCHEM, V9, P2343, DOI 10.1002/cssc.201600824 van der Waals D, 2016, CHEM-EUR J, V22, P11568, DOI 10.1002/chem.201602679 vom Stein T, 2014, J AM CHEM SOC, V136, P13217, DOI 10.1021/ja506023f Zou SH, 2017, J PHYS CHEM C, V121, P4343, DOI 10.1021/acs.jpcc.6b12346 Trincado, Monica Grutzmacher, Hansjorg Prechtl, Martin H. G. Schweizer Nationalfonds (SNF); Eidgenossische Hochschule Zurich; Ministerium fur Innovation, Wissenschaft und Forschung (NRW); Heisenberg-Program (Deutsche Forschungsgemeinschaft); Alexander-von-Humboldt Foundation; DAAD; COST Action CARISMA; COST Action CHAOS This work was supported by the Schweizer Nationalfonds (SNF), Eidgenossische Hochschule Zurich, the Ministerium fur Innovation, Wissenschaft und Forschung (NRW-returnee award 2009 to M. H. G. P.) and the Heisenberg-Program (Deutsche Forschungsgemeinschaft). Additionally, M. H. G. P. gratefully acknowledges financial support provided by the Alexander-von-Humboldt Foundation, DAAD and the COST Actions CARISMA and CHAOS. 0 Walter de gruyter gmbh Berlin 2365-659x

PY - 2018

Y1 - 2018

N2 - Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies' energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.

AB - Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies' energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.

KW - formaldehyde methanol carbon dioxide reforming hydrogen storage hydrogen generation carbon-dioxide room-temperature mild conditions methanol dehydrogenation photocatalytic reduction aqueous formaldehyde catalytic-system pincer catalyst formic-acid co2 Sci

U2 - 10.1515/psr-2017-0013

DO - 10.1515/psr-2017-0013

M3 - Journal article

VL - 3

JO - Phys. Sci. Rev.

JF - Phys. Sci. Rev.

SN - 2365-6581

IS - 5

ER -