Bias-corrected Pearson estimating functions for Taylor’s power law applied to benthic macrofauna data

Bent Jørgensen, Clarice G.B. Demétrio, Erik Kristensen, Gary Thomas Banta, Hans Christian Petersen, Matthieu Delfosse

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Resumé

Estimation of Taylor’s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating function. Furthermore, we investigate a more general regression model allowing for site-specific covariates. This method may be efficiently implemented using a Newton scoring algorithm, with standard errors calculated from the inverse Godambe information matrix. The method is applied to a set of biomass data for benthic macrofauna from two Danish estuaries.
OriginalsprogEngelsk
TidsskriftStatistics & Probability Letters
Vol/bind81
Udgave nummer7
Sider (fra-til)749-758
Antal sider10
ISSN0167-7152
DOI
StatusUdgivet - 2011

Emneord

  • population
  • bentisk fauna

Citer dette

Jørgensen, Bent ; Demétrio, Clarice G.B. ; Kristensen, Erik ; Banta, Gary Thomas ; Petersen, Hans Christian ; Delfosse, Matthieu. / Bias-corrected Pearson estimating functions for Taylor’s power law applied to benthic macrofauna data. I: Statistics & Probability Letters. 2011 ; Bind 81, Nr. 7. s. 749-758.
@article{81a1a5678f75479785cc8fbb69d6f857,
title = "Bias-corrected Pearson estimating functions for Taylor’s power law applied to benthic macrofauna data",
abstract = "Estimation of Taylor’s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating function. Furthermore, we investigate a more general regression model allowing for site-specific covariates. This method may be efficiently implemented using a Newton scoring algorithm, with standard errors calculated from the inverse Godambe information matrix. The method is applied to a set of biomass data for benthic macrofauna from two Danish estuaries.",
keywords = "population, bentisk fauna",
author = "Bent J{\o}rgensen and Dem{\'e}trio, {Clarice G.B.} and Erik Kristensen and Banta, {Gary Thomas} and Petersen, {Hans Christian} and Matthieu Delfosse",
year = "2011",
doi = "10.1016/j.spl.2011.01.005",
language = "English",
volume = "81",
pages = "749--758",
journal = "Statistics & Probability Letters",
issn = "0167-7152",
publisher = "Elsevier BV * North-Holland",
number = "7",

}

Bias-corrected Pearson estimating functions for Taylor’s power law applied to benthic macrofauna data. / Jørgensen, Bent; Demétrio, Clarice G.B.; Kristensen, Erik; Banta, Gary Thomas; Petersen, Hans Christian; Delfosse, Matthieu.

I: Statistics & Probability Letters, Bind 81, Nr. 7, 2011, s. 749-758.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

TY - JOUR

T1 - Bias-corrected Pearson estimating functions for Taylor’s power law applied to benthic macrofauna data

AU - Jørgensen, Bent

AU - Demétrio, Clarice G.B.

AU - Kristensen, Erik

AU - Banta, Gary Thomas

AU - Petersen, Hans Christian

AU - Delfosse, Matthieu

PY - 2011

Y1 - 2011

N2 - Estimation of Taylor’s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating function. Furthermore, we investigate a more general regression model allowing for site-specific covariates. This method may be efficiently implemented using a Newton scoring algorithm, with standard errors calculated from the inverse Godambe information matrix. The method is applied to a set of biomass data for benthic macrofauna from two Danish estuaries.

AB - Estimation of Taylor’s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating function. Furthermore, we investigate a more general regression model allowing for site-specific covariates. This method may be efficiently implemented using a Newton scoring algorithm, with standard errors calculated from the inverse Godambe information matrix. The method is applied to a set of biomass data for benthic macrofauna from two Danish estuaries.

KW - population

KW - bentisk fauna

U2 - 10.1016/j.spl.2011.01.005

DO - 10.1016/j.spl.2011.01.005

M3 - Journal article

VL - 81

SP - 749

EP - 758

JO - Statistics & Probability Letters

JF - Statistics & Probability Letters

SN - 0167-7152

IS - 7

ER -