Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

Saif Ullah, Takayoshi Ishimoto, Mike P. Williamson, Poul Erik Hansen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Resumé

Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show that the structures in solution are different from those in the crystal and that solvation plays an important role in weakening the hydrogen bonds.
OriginalsprogEngelsk
TidsskriftJournal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical
Vol/bind115
Udgave nummer12
Sider (fra-til)3208-15
Antal sider8
ISSN1520-6106
DOI
StatusUdgivet - 2011

Citer dette

@article{80499b84388c4cf7b30a33d74eb888f4,
title = "Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines",
abstract = "Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show that the structures in solution are different from those in the crystal and that solvation plays an important role in weakening the hydrogen bonds.",
author = "Saif Ullah and Takayoshi Ishimoto and Williamson, {Mike P.} and Hansen, {Poul Erik}",
year = "2011",
doi = "10.1021/jp1111789",
language = "English",
volume = "115",
pages = "3208--15",
journal = "Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical",
issn = "1520-6106",
publisher = "American Chemical Society",
number = "12",

}

Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines. / Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.; Hansen, Poul Erik.

I: Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical, Bind 115, Nr. 12, 2011, s. 3208-15.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

TY - JOUR

T1 - Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

AU - Ullah, Saif

AU - Ishimoto, Takayoshi

AU - Williamson, Mike P.

AU - Hansen, Poul Erik

PY - 2011

Y1 - 2011

N2 - Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show that the structures in solution are different from those in the crystal and that solvation plays an important role in weakening the hydrogen bonds.

AB - Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show that the structures in solution are different from those in the crystal and that solvation plays an important role in weakening the hydrogen bonds.

U2 - 10.1021/jp1111789

DO - 10.1021/jp1111789

M3 - Journal article

VL - 115

SP - 3208

EP - 3215

JO - Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical

JF - Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical

SN - 1520-6106

IS - 12

ER -