Projektdetaljer
Beskrivelse
The study of branched networks helps understand and control systems as diverse as river deltas, slime molds, and city infrastructure. In multicellular organisms several different networks form within a confined space & time during embryonic development. These networks include vasculature, ducts, and neuronal networks, which ultimately serve as vital transportation and communication systems within and between organs. The coordination between these networks defines the final function of the organ, and cell fate allocation. However, since these networks have only been studied separately, their coordination into a functional entity is not known. Existing statistical and data science methods fail to address such
combinations of networks, which lack correspondence between nodes, making their joint representation and analysis hard to tackle with standard tools. The networks’ structure and nodes also change over time, making it difficult to analyze their dynamical formation. We will join our expertise in dynamic
bioimaging, machine learning (ML), and topological statistics to uncover the principles guiding the coordination of co-existing networks. This will provide valuable new knowledge of how organismal systems are integrated.
combinations of networks, which lack correspondence between nodes, making their joint representation and analysis hard to tackle with standard tools. The networks’ structure and nodes also change over time, making it difficult to analyze their dynamical formation. We will join our expertise in dynamic
bioimaging, machine learning (ML), and topological statistics to uncover the principles guiding the coordination of co-existing networks. This will provide valuable new knowledge of how organismal systems are integrated.
Lægmandssprog
Forestil dig et indre organ i kroppen på et tidligt foster, der starter som en lille klump af celler. Dette organ skal ikke bare vokse og danne alle de typer af celler, der er nødvendige for dets funktion. Det skal også udvikle forgrenede netværk af nerveceller og blodårer, som skal være placeret rigtigt i organet for, at de kan bidrage med ilt, næringsstoffer og signaler fra vores centralnervesystem til de rigtige celler i organet. Spørgsmålet er, hvordan disse sameksisterende biologiske netværk bliver koordineret under forsterudviklingen.
Formålet med projektet er at optage 3D-film af processen hvorved de biologiske netværk dannes og udvikle nye matematiske og datalogiske metoder til at analysere, hvordan netværkene forholder sig til hinanden.
Formålet med projektet er at optage 3D-film af processen hvorved de biologiske netværk dannes og udvikle nye matematiske og datalogiske metoder til at analysere, hvordan netværkene forholder sig til hinanden.
Akronym | DECONET |
---|---|
Status | Igangværende |
Effektiv start/slut dato | 01/05/2025 → 31/07/2028 |
Samarbejdspartnere
- Roskilde Universitet (leder)
- Danmarks Tekniske Universitet
- University College London
Finansiering
- Villum Fonden: 536.200,00 €
Presse/medier
-
For biolog er tværfagligheden en stige over den mur, som hendes felt har ramt
09/11/2024
1 element af Mediedækning
Presse/medie
-
Lektor modtager fire mio. kr. til tværfaglig forskning i fosterudviklingens biologiske netværk
15/10/2024
1 element af Mediedækning
Presse/medie